Multiview Super-resolution Microscopy System and Methods for Research and Diagnostic Applications

This technology includes a microscopy technique that combines the strengths of multiview imaging (better resolution isotropy, better depth penetration) with resolution-improving structured illumination microscopy (SIM). The proposed microscope uses a sharp line-focused illumination structure to excite and confocally detect sample fluorescence from 3 complementary views.

Producing Isotropic Super-Resolution Images from Line Scanning Confocal Microscopy

This technology includes a microscopy technique that produces super-resolution images from diffraction-limited images obtained from a line scanning confocal microscope. First, the operation of the confocal microscope is modified so that images with sparse line excitation are recorded. Second, these images are processed to increase resolution in one dimension. Third, by taking a series of such super-resolved images from a given sample type, a neural network may be trained to produce images with 1D super-resolution from new diffraction-limited images.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

Peptide Mimotope Candidates for Otitis Media Vaccine

This technology describes peptide mimotopes of lipooligosaccharides (LOS) from nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis that are suitable for developing novel vaccines against the respective pathogens, for which there are currently no licensed vaccines. The mimotopes not only immunologically mimic LOSs from NTHi and M. catarrhalis but will also bind to antibodies specific for the respective LOS. NTHi and M. catarrhalis are common pathogens that cause otitis media in children and lower respiratory tract infections in adults.