Angiogenesis-Based Cancer Therapeutic

Vascular Endothelial Growth Factor-A (VEGF-A) is an angiogenic agent that drives blood vessel formation in solid tumors and other diseases, such as macular degeneration and diabetic retinopathy. Several therapies that target the ability of VEGF to stimulate angiogenesis have been approved. These therapies regulate VEGF-A activity by binding VEGF-A, thereby blocking VEGF-A from binding to its receptor on target cells. This technology utilizes a different approach to regulating VEGF-A activity by providing a VEGF-A protein antagonist that is produced by engineering native VEGF-A protein.

Gene Therapy Vector for the Treatment of Glycogen Storage Disease Type Ia (GSD-Ia)

GSD-Ia is an inherited disorder of metabolism associated with life-threatening hypoglycemia, hepatic malignancy, and renal failure caused by the deficiency of glucose-6-phosphatase-alpha (G6Pase-alpha or G6PC). Current therapy, which primarily consists of dietary modification, fails to prevent long-term complications in many patients, including growth failure, gout, pulmonary hypertension, renal dysfunction, osteoporosis, and hepatocellular adenomas (HCA).

In silico design of RNA nanoparticles

RNA nanoparticles have the potential to serve as excellent drug or imaging delivery systems due to their designability and versatility. Furthermore, the RNA nanoparticles of the invention are also capable of self-assembly and potentially form nanotubes of various shapes which offer potentially broad uses in medical implants, gene therapy, nanocircuits, scaffolds and medical testing.

Her2 Monoclonal Antibodies, Antibody Drug Conjugates as Cancer Therapeutics

Antibody drug conjugates (ADC) can demonstrate high efficacy as cancer therapeutics, however, much more can be done to improve their efficacy and safety profile. Site-specific antibody drug conjugation is a promising way to do this. Scientists at the NCI’s Laboratory of Experimental Immunology have identified a fully human monoclonal antibody, m860, that binds to cell surface-associated Her2 with affinity comparable to that of Trastuzumab (Herceptin) but to a different epitope.

Cancer Therapeutic Based on T Cell Receptors Designed to Regiospecifically Release Interleukin-12

Adoptive immunotherapy is a promising new approach to cancer treatment that engineers an individual''s innate and adaptive immune system to fight against specific diseases, including cancer with fewer side-effects and more specific anti-tumor activity in individual patients. T cell receptors (TCRs) and Chimeric Antigen Receptors (CARs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response to destroy abnormal cells.

Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

A child's growth is dependent on the proper functioning of the growth plate, a specialized cartilage structure located at the ends of long bones and within the vertebrae. The primary function of the growth plate is to generate new cartilage, which is then converted into bone tissue and results in the lengthening of bones. Failure of the growth plate to function properly can result in short stature or sometimes a skeletal dysplasia, such as achondroplasia, in which the bones are not just short but also malformed.

Cancer Immunotherapy Using Virus-like Particles

One major challenge in the development of effective cancer therapies is a lack of universal, cancer specific markers in target cells. The current standard therapies rely on surgery, chemotherapy, and radiation therapy. Such procedures lead to a population of resistant cancer cells that makes further applications of chemotherapy/radiation therapy ineffective. Additionally, the systemic application of chemotherapy lacks specificity and has  off-target systemic effects that lead to adverse side effects.