Nitric Oxide Based Therapeutics for the Treatment of Lung Cancer

Nitric oxide (NO) has a broad spectrum of actions in physiological and pathological processes.  NO-donor drugs have shown therapeutic effect in several cancer types by inducing apoptosis but the concentrations required have suggested limited clinical applicability.  For cancers such as non-small cell lung cancer where most therapies are not curative, there remains a need for effective treatments. 

Nitric Oxide-Releasing Polymers for Wound Healing

 A number of factors can play a detrimental role in the process of wound healing such as poor nutritional status, smoking, various drugs, cancer, and diabetes.  Wound healing impairment is a challenging clinical problem with no efficacious treatments currently available.  Nitric oxide (NO) has been shown to play a role in the process of wound healing by promoting both the proliferative and remodeling phases of healing. 

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Thymoma and thymic carcinomas are a rare and poorly understood group of malignancies.   Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies.

Novel Anti-HIV Proteins from Coral Reefs

Scientists at the National Cancer Institute's Molecular Targets Laboratory have discovered that Cnidarins as a novel class of highly potent proteins capable of blocking the HIV virus from penetrating T-cells. Cnidarins were found in a soft coral collected in waters off Australia's northern coast. Cnidarins can block virus fusion/entry but do not block viral attachment. In addition, Cnidarins do not have lectin-like activity and therefore possibly a unique mechanism of action.

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present invention discloses novel RNA  and RNA/DNA nanoparticles including  multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. These RNA nanoparticles are useful for various nanotechnological applications.

Novel Immunotherapy for Cancer Treatment: Chimeric Antigen Receptors Targeting CD70 Antigen

Scientists at the NCI's Surgery Branch have developed anti-CD70 chimeric antigen receptors (CARs) to treat cancers. CD70 is an antigen that is expressed on a variety of human cancers such as renal cell carcinoma, glioblastoma, non-Hodgkin's lymphoma, and chronic lymphocytic leukemia. The anti-CD70 CARs are hybrid proteins consisting of a receptor portion that recognizes CD70 antigen, and intracellular T cell signaling domains selected to optimally activate the CAR expressing T cells.

PARP Inhibitor and NO-Donor Dual Prodrugs as Anticancer Agents

Poly-ADP ribose polymerase-1 (PARP-1) is a critical enzyme involved in DNA repair.  The inhibition of PARP has emerged as a promising strategy in cancer therapy.  Numerous PARP inhibitors have been developed and advanced into clinical trials, both for use as single agents in specific patient populations and as combination therapies with various chemotherapeutics.  The induction of strand break damage to DNA, as has been demonstrated in cancer cells treated with O2-arylated diazeniumdiolates, coupled with inhibition of DNA repair by PARP inhibitors, represents a novel rational