Expanded Claims for Transcatheter Coronary Sinus Mitral Valve Annuloplasty Procedure and Coronary Artery and Myocardial Protection

This technology includes a novel transcatheter repair for functional mitral valve regurgitation, called mitral cerclage annuloplasty. This includes coronary artery protection for mitral cerclage annuloplasty against inside-out compression from subsequent transcatheter valve-in-ring mitral valve implantation, wherein the ring is created by the cerclage annuloplasty. Cerclage annuloplasty is to create a semi-rigid ring at the level of the mitral annulus.

Segmented Metallic MRI Guidewires Using Stiffness-matched Nonconductive Connectors for Catheterization Procedures

This technology includes a metallic guidewire that is suitable for MRI catheterization, because it is mechanically long but electrically consists of short conductive segments that cannot resonate during MRI. The invention consists of stiffness-matched non-conductive connectors or connections that are used along with short metallic segments. The embodiment reduced to practice has torquability and flexibility comparable to marketed metallic guidewires, yet is free from MRI heating.

Endo-cameral Closure Device for Structural Heart Defects and Blood Vessel Repair

This technology includes a device to close a hole in the wall of a large blood vessel or cardiac chamber from the inside out, delivered over a guidewire and through a catheter or sheath. First, the proximal portion deploys within the vessel or chamber and is advanced over a guidewire to oppose the wall and seal the hole. Second, the distal portion self-assembles outside the vessel or chamber upon withdrawal of the guidewire. Deployment of the distal portion anchors the device securely in place.

Treatment of Periodontal Disease via ENPPI Inhibition

This technology focuses on enhancing cementum production, a key component in treating periodontal regression. The method involves inhibiting ectonucleotide pyrophosphatase phosphodiesterases (ENPP1), enzymes that play a significant role in mineralization processes. Pyrophosphate (PPi) is known to impede the growth of hydroxyapatite crystals, essential for mineralization. ENPP1 catalyzes the hydrolysis of ATP, generating PPi, which then hinders mineralization.

Mouse Model of Pompe Disease for Therapy Discovery

This technology includes a mouse model of Pompe disease, created by targeted inactivation of the acid alpha-glucosidase gene, to test novel therapies. Pompe disease is a severe muscle disorder that affects people at any age. It is a rare genetic disease caused by a deficiency of a lysosomal enzyme acid alpha-glucosidase. The enzyme degrades glycogen to glucose in the lysosomes. The deficiency leads to accumulation of glycogen in multiple organs, but cardiac and skeletal muscles are most severely affected.

A Phospho-specific antibody to Fc “epsilon” R1 “gamma” as a Diagnostic Tool for Allergic Reactions

This technology includes a mouse monoclonal antibody that recognizes the phosphorylated form of the FceRiy which could be used as a diagnostic tool during allergic reactions. The FcERI is central to the activation of mast cells and basophils and activation of this receptor induces these cells to secrete mediators that cause allergic symptoms. This antibody specifically recognizes the phosphorylated tyrosine 47 (Y 47) of the FceRiy. Phosphorylation of this site Indicates that this receptor is in an active state and thus the cells can secrete allergic mediators.

SARS-CoV-2 Neutralizing Nanobodies for Therapeutic and Diagnostic Uses

This technology involves the utilization of highly effective nanobodies, specifically camelid antibodies, derived from immunized llamas to neutralize SARS-CoV-2. Additionally, it employs a unique mouse model, called a "nanomouse," that is engineered to express antibody genes from camels, alpacas, and dromedaries. These nanobodies offer significant advantages over traditional human and mouse antibodies due to their smaller size, which allows them to effectively target and bind to specific areas on antigens.

Human TL 1A-transgenic Mouse as a Disease and Therapeutic Model

This technology includes mouse models of TL 1A diseases, such as inflammatory bowel disease and rheumatoid arthritis, to be used as a platform for studying therapeutic agents. The TNF family cytokine TL 1A co-stimulates T-cells through Its receptor and is required for autoimmune pathology driven by diverse T-cell subsets. Blocking TL 1A in mouse models of these diseases is efficacious blocking TL 1A may be useful for therapy of diseases in which TL 1A plays a pathogenic role.

Three-dimensional Fluorescence Polarization Excitation via Multiview Imaging

This technology includes a method that extends fluorescence polarization imaging so that the dipole moment of a fluorescent dye may be excited regardless of its 3D orientation. By exciting the dipole from multiple directions, we ensure that excitation may occur even if the dipole is unfavorably oriented along the axial (propagation) axis. If the dye can be rigidly attached to the structure of interest, our method also enables the 3D orientation of the structure to be estimated accurately.