CNS Therapeutics That Target Neuronal Ceroid-Lipofuscinoses and Thioesterase Deficiency Disorders

Clinically known as Neuronal Ceroid-Lipofuscinoses (NCL), Batten disease, is a rare neuron killing disease and one of the lysosomal storage disorders (LSDs).  It is associated with a mutation or lack of palmitoyl-protein thioesterase-1 (PPT1) gene. It manifests very early in a child's life causing absence of brain activity as early as 4 years of age.

Cancer-reactive T cells from Peripheral Blood

Adoptive cell therapy (ACT) using genetically engineered T-cell receptors (TCRs) is a promising cancer treatment. These TCRs target genetic mutations unique to patients and play an important role in tumor regression. However, mutation-reactive T-cells and their TCRs can be difficult to identify and isolate from patients. Therefore, we need more efficient methods of isolating mutation-reactive T-cells for use with ACT. 

Tissue Clamp for Repeated Opening and Closure of Incisions/Wounds

Medical clamps currently available are not efficient nor are they sufficiently precise in closure and alignment of the edges of an incision or wound. Many available designs are difficult to use and handle, especially in situations where repeated opening and closure of an incision or wound is required. The functional short-comings of existing clamp designs may result in surgical complications, such as excess loss of fluids and pressure and hemostasis during some procedures.

FIBP Knockout Potentiates Therapeutic Effects of T-cell Based Therapies in Solid Tumors

Despite recent breakthroughs in cancer immunotherapy, T-cell based therapies achieve limited efficacy in solid tumors. Immunosuppression, antigen escape and physical barriers to entry into solid tumors are issues faced. Identifying regulators in T-cell dysfunction remains challenging due to limitations of current screening platforms. 

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Chimeric antigen receptors (CARs) with high affinity for mesothelin that can be used as an immunotherapy to treat cancers that express mesothelin, such as pancreatic cancer, ovarian cancer, and mesothelioma. The technology includes CAR constructs with one of three different mesothelin-specific antibody portions, including either the mouse-derived SS or SS1 antibody fragments or the human HN1 antibody fragment.

Methods For Treating or Preventing Inflammation and Periodontitis

Bone-loss-related diseases, such as periodontitis, are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. There are several signaling pathways that participate in the osteoclastogenesis process. Finding inhibitors of these pathways and other osteoclastogenesis-related pathways may have an effect on bone-loss diseases.

Modified griffithsin tandemers for enhanced activity and reduced viral aggregation

Griffithsin (GRFT) is a lectin with potent antiviral properties that is capable of preventing and treating infections caused by a number of enveloped viruses (including HIV, SARS, HCV, HSV, and Japanese encephalitis) and is currently in clinical development as an anti-HIV microbicide. In addition to its broad antiviral activity, GRFT is stable at high temperature and at a broad pH range, displays low toxicity and immunogenicity, and is amenable to large-scale manufacturing.

Methods for Selection of Cancer Patients and Predicting Efficacy of Combination Therapy

Available for licensing from the Laboratory of Cancer Biology and Genetics of the National Cancer Institute (NCI) is a novel gene signature of thirty-seven drug-responsive genes that links changes in gene expression to the clinically desirable outcome of improved overall survival. Expression of these genes has been linked to prognosis in several cancers, including, but not limited to: multiple myeloma, melanoma, and lung and breast cancers.