Anti-SLAMF7 Chimeric Antigen Receptors

Immortalization of plasma cells leads to Multiple Myeloma (MM). Signaling Lymphocyte Activation Molecule F7 (SLAMF7) is highly expressed on the malignant plasma cells that constitute Multiple Myeloma. The expression of SLAMF7 by MM cells and lack of expression on nonhematologic cells makes SLAMF7 a promising target for chimeric antigen receptor (CAR) T cell therapies for the treatment of MM. 

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Patients with chemotherapy-refractory, diffuse large B-cell lymphoma (DLBCL) have poor prognoses. CD19 and CD20 are promising targets for the treatment of B-Cell malignancies. However, despite the initial promising results from anti-CD19 CAR therapy, only 30-35% of patients with DLBCL achieve remissions lasting longer than 2-3 years after anti-CD19 CAR T-cell therapy. Relapse and non-response are likely due to diminished CD19 expression after anti-CD19 therapy and low expression of CD19 in some lymphomas. 

IgG4 Hinge Containing Nanobody-based CARs Targeting GPC3 for Treating Liver Cancer

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Globally, HCC is the sixth most prevalent cancer and third leading cause of cancer-related morbidity. Standard treatment for HCC is not suitable for a large proportion of liver cancer patients. Part of this is because less than a quarter of HCC patients are surgical candidates for curative-intent treatment. As a result, alternative treatments are needed. Chimeric antigen receptor (CAR) T cell therapy is a promising alternative approach selectively targets targeting tumors via tumor-specific antigens.

Cross Species Single Domain Antibodies Targeting PD-L1 for Treating Solid Tumors

Programed Death-Ligand 1 (PD-L1, also known as B7-H1 or CD274) is a cell surface protein that binds to Programmed Cell Death Protein 1 (PD-1, also known as CD279). An imbalance in PD-1/PD-L1 activity contributes to cancer immune escape.  PD-1 is expressed on the surface of antigen-stimulated T cells. The interaction between PD-L1 and PD-1 negatively regulates T cell-mediated immune responses. It has been suggested that disrupting the PD-L1/PD-1 signaling pathway can be used to treat cancers. The aberrant expression of PD-L1 on multiple tumor types supports this suggestion.

High Affinity Monoclonal Antibodies Targeting Glypican-1

Pancreatic cancer is the fourth most common cause of death from cancer in the U.S. The overall 5-year survival rate for this disease is 8.5%. Glypican-1 (GPC1), a cell surface heparan sulfate proteoglycan protein that is overexpressed in pancreatic cancer. Due to this preferential expression, GPC1 represents a potential candidate for targeted therapy for patients with pancreatic cancer and other GPC1 expressing cancers such as prostate cancer.

: Single Domain Antibodies targeting HPV E6/E7 Oncogenic Peptide/MHC complexes

Human papillomavirus (HPV) has been linked to many cancers including cervix, uterine, anus, vulva, vagina, and penis. Although HPV vaccines exist to prevent HPV-associated cancers, there are still more than 5,000 deaths caused by HPV-associated cancers each year in the US and cervical cancer continues to be the second leading cause of cancer death in women ages 20 to 39.

Combination of recombinant IL-7 with Chimeric Antigen Receptor (CAR) T Cells Targeting Glypican-3 (GPC3) for the Treatment of Hepatocellular Carcinoma (HCC)

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. standard treatment for HCC is not suitable for a large proportion of liver cancer patients. As a result, alternative treatments are needed. Chimeric antigen receptor (CAR) T cell therapy is a promising alternative approach selectively targets targeting tumors via tumor-specific antigens. However, to date, no effective CAR T cell therapy exists for HCC. 

High Affinity Nanobodies Targeting B7-H3 (CD276) for Treating Solid Tumors

CD276 (also called B7-H3) is a pan-cancer antigen expressed in multiple solid tumors and an emerging cancer target. CD276 protein is overexpressed in pancreatic cancer, prostate cancer, breast cancer, colon cancer, lung cancer, and brain tumors (such as neuroblastoma) – making it an ideal target for cancer therapy. 

Investigators at the National Cancer Institute (NCI) have isolated a panel of anti-CD276 single domain antibodies (also known as nanobodies) from novel camel and rabbit single domain (VHH) libraries by phage display. 

Epstein-Barr Virus (EBV)-feeder Cell Line

This technology includes irradiated Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCL) as feeder cells for the ex vivo expansion of natural killer (NK) cells. EBV-LCL feeder cells, altered by radiation to prevent uncontrolled growth, provide a supportive environment for NK cells to multiply effectively. This method addresses the challenge of obtaining sufficient quantities of functionally active NK cells, which are crucial components of the immune system known for their ability to target and destroy tumor cells and virally infected cells.