Bivalent Tn5 Complex and its Application to Map Enhancer-Promoter Interactions for Use in Diagnostics

This technology includes a new reagent, termed bivalent Tn5 complex, and applied it to mapping genome-wide enhancer-promoter interactions to be utilized for disease diagnostics. Chromatin structure is critical for regulating transcription in normal development and disease states. In particular, the interaction between enhancers and promotes are essential for the temporospatial control of gene expression.

Transcatheter MRI-guided Implantable Cavopulmonary Bypass Endograft for the Treatment of Congenital Heart Disease

This technology includes a catheter-delivered endograft designed to treat congenital heart disease without surgery. The specific surgical procedure averted is cavopulmonary bypass graft. The key innovations are features to effect distal end-to-side anastomosis and proximal end-to-end anastomosis without surgery. The system operates under X-ray and MRI guidance.

Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Mass Spectrometry Derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Multiview Super-resolution Microscopy System and Methods for Research and Diagnostic Applications

This technology includes a microscopy technique that combines the strengths of multiview imaging (better resolution isotropy, better depth penetration) with resolution-improving structured illumination microscopy (SIM). The proposed microscope uses a sharp line-focused illumination structure to excite and confocally detect sample fluorescence from 3 complementary views.

Computational Alleviation of Depth-dependent Degradation in Fluorescence Images

This technology includes an approach that dramatically lessens the effects of depth-dependent degradation in fluorescence microscopy images. First, we develop realistic ‘forward models’ of the depth dependent degradation and apply these forward models to shallow imaging planes that are expected to be relatively free of such degradation. In doing so, we create synthetic image planes that resemble the degradation found in deeper imaging planes. Second, we train neural networks to remove the effect of such degradation, using the shallow images as ground truth.

Improvement of Axial Resolution via Photoswitching and Standing Wave Illumination

This technology includes an illuminator and reflector that enables flexible standing wave illumination on an inverted microscope stand, and procedures for using such illumination to improve axial resolution in confocal or instant SIM imaging systems. The axial resolution in conventional fluorescence microscopy is typically limited by diffraction to ~700 nm. This method that improves axial resolution ~7-fold over the diffraction limit, and that can be applied to any fluorescence microscope.

Paper Strip Tool with Gold Nanoparticle Conjugated Probes for Rapid Detection of Pathogens in Stool

This technology includes a paper strip tool that may be used at the point-of care to detect the presence of a multiplex of pathogen nucleic acid sequences in stool without the need for molecular amplification, laboratory or instrumentation. This invention can be used to rapidly and inexpensively detect gastrointestinal and diarrheal disease in order to guide treatment.

A New Molecular Scaffold for Targeting hRpn13 as a Treatment for Cancer

This technology includes a new chemical scaffold (with lead compound XL5) against hRpn13 that induces apoptosis, which may have clinical efficacy against cancer. The structure of XL5-conjugated hRpn13 guided the design of XL5-PROTAC degrader compounds that exhibit greater efficacy than previous hRpn13-targeting compounds, as evaluated by selectivity for hRpn13, induction of apoptosis, and loss of cell viability. In cells, XL5-PROTACs revealed the presence of a truncated hRpn13 product that binds to proteasomes and is selectively degraded by XL5-PROTACs.

Real-time Monitoring of In Vivo Free Radical Scavengers Through Hyperpolarized [1-13C] N-acetyl Cysteine as a Diagnostic and Disease Monitoring Tool

This technology includes synthesized demonstrated [1-13C] NAC as a promising novel probe for hyperpolarized 13C MRI methodologies which could provide diagnostic, and evaluation of response to treatment in various cancers and neurological diseases. N-acetyl cysteine (NAC) is a widely used therapeutic and involved to stimulate glutathione synthesis. Glutathione elevates detoxification and works directly as a free radical scavenger. In vivo hyperpolarized NAC was broadly distributed throughout the body.