Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research. 

Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro. 

Strategies to Protect Mammalian Neural Tissue Against Cold and Potentially Other Metabolic Stresses and Physical Damages

Researchers at the National Eye Institute (NEI) have discovered an invention describing a composition and method(s) of using such composition for preserving viability of cells, tissues, or organs at a low temperature (around 4ºC). Current cold storage solutions or methods for cells, tissues, and organs are suboptimal due to irreversible damage to cold-sensitive tissue or organ transplants that need a longer term of storage for facilitating clinical practices.

Induced Pluripotent Stem Cells Derived from Patients with CEP290-associated Ciliopathies and Unaffected Family Members

Approximately one-third of non-syndromic retinal dystrophies involve a defect in a ciliary protein. Non-syndromic retinal ciliopathies include retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, macular dystrophy, and Leber-congenital amaurosis (LCA). Many CEP290-LCA patients also exhibit auditory and olfactory defects. Induced pluripotent stem cells (iPS) cells were derived from patients with LCA and unaffected relatives. 
The National Eye Institute (NEI) seeks research collaborations and/or licensees for the use of these iPS cells.

Enhanced S10-3 Cell Line for Advanced Hepatitis E Virus Research and Therapeutic Development

The Huh-7 cell line underwent a detailed sub-cloning process to enhance its effectiveness for Hepatitis E Virus (HEV) infection studies. This involved diluting and culturing cells in 96-well plates until confluent monolayers formed, followed by selection and expansion of the most suitable cells. The sub-clone S10-3, derived from this process, was identified as the most efficient for transfection and infection by HEV.

Antibodies to TMC1 Protein for Hearing Loss

This technology includes antibodies for TMC1 protein as a treatment for hearing loss. TMC1 is one of the common genes causing hereditary hearing loss. Our laboratory used synthetic peptides corresponding to the TMC1 protein to immunize rabbits. The resulting antisera were shown to bind to TMC1 protein expressed in heterologous expression systems. TMC1 protein is required for the transduction of sound into electrical impulses in inner ear sensory cells.

Compositions and Methods for Reducing Serum Triglycerides

This technology includes a vaccine for lowering plasma triglycerides by inducing the formation of autoantibodies against either ANGPTL3 or ANGPTL4, which are inhibitors of Lipoprotein Lipase. This was done by conjugating synthetic peptides based on ANGPTL3 or ANGPTL4 to virus- like particles (VLPS). Injection of the vaccine in animal models was shown to induce the autoantibody against the target and to lower plasma triglycerides.

Resolution Doubling with Digital Confocal Microscopy

This technology includes a microscopy method that reduces the speed penalty at least 1000-fold, while retaining resolution improvement. A Digital mirror device (DMD) or sweptfield confocal unit is used to create hundreds to thousands of excitation foci that are imaged to a sample mounted in a conventional microscope and record the resulting emissions on an array detector. Detection of each confocal spot is done in our proprietary software, as is the processing and deconvolution that is used for a 2x resolution enhancement.

Transgene Free Non-human Primate Induced Pluripotent Stem Cells (iPSCs) for Use in Pre-clinical Regenerative Medicine Research

This technology includes rhesus macaque induced pluripotent stem cells (iPSCs) lines from multiple animals and various types of cells to establish this pre-clinical model. iPSCs are a type of pluripotent stem cell that can be generated from adult somatic cells. The iPSC technology holds great potential for regenerative medicine. Before clinical application, it is critical to evaluate safety and efficacy in a clinically-relevant animal model. We propose that non-human primate models are particularly relevant to test iPSC-based cell therapies.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) have developed orthotopic allograft models for pancreatic cancer that utilize low passage primary pancreatic adenocarcinoma cells or tumor fragments implanted into the cancer-free pancreata of recipient syngeneic immunocompetent mice. Tumor development in these models is more synchronized, latency is substantially shortened, and tumors develop only in one location, as pre-determined by the choice of a site for cells/tumor fragment implantation.