Bioluminescent Bladder Cancer Cell Line for Tracking Cancer Progression

Bladder cancer is the fifth most common cancer in the United States and one of the costliest cancers to treat. Compared to other cancer types, bladder cancer has been understudied, and there is a need for informative mouse bladder cancer models that resemble the clinical situation and allow for evaluation of chemotherapeutic or immunotherapeutic agents. The orthotopic murine bladder cancer model MB49 resembles non-muscle invasive, nonmetastatic urothelial carcinomas and provides an opportunity to study the anti-tumor effects of immune cell checkpoint inhibitors.

Development and Characterization of the SLC46A3 Knockout Mouse Line

Nonalcoholic fatty liver disease is caused by several factors including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant. TCDD causes lipid accumulation in humans by inducing the Solute Carrier Family 46 Member 3 (SLC46A3) gene expression. To effectively study TCDD-mediated lipid accumulation, research tools such as SLC46A3 knockout cells and animal models are required.

Vascularized Thyroid-on-a-Chip for Personalized Drug Screening and Disease Modeling

This technology includes a micro-engineered “thyroid-on-a-chip” that combines human thyroid organoids with integrated micro-vasculature to replicate the gland’s native blood flow and 3-D architecture, enabling rapid, patient-specific drug screening. By permitting real-time perfusion of nutrients, hormones, and immune cells, the platform yields more physiologically relevant data than conventional static cultures or animal surrogates.

Development of an Efficient and Affordable Protein Purification System to Study Protein Functions and Structures

This technology includes a semi-automatic and affordable protein purification system that produces purified proteins with yields and purities comparable to an automatic protein purification system for less than 10% of its cost, which can be used for studying protein structure and function, as well as antibody purifications and drug screenings. Additionally, the new system is flexible and customizable for use with both custom-made and commercial pre-made resin columns with either gravity flow or low-pressure configurations.

Rabbit Antisera to Various Matrix, Matricellular, and Other Secreted Proteins

The extracellular matrix (ECM) is composed of a group of proteins that regulate many cellular functions, such as cell shape, adhesion, migration, proliferation, and differentiation. Deregulation of ECM protein production or function contributes to many pathological conditions, including asthma, chronic obstructive pulmonary disease, arthrosclerosis, and cancer. Scientists at the NIH have developed antisera against various ECM components such as proteoglycan, sialoprotein, collagen, etc.. These antisera can be used as research tools to study the biology of extracellular matrix molecules.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).