A Machine Learning Strategy to Improve the Fidelity of Imaging Time-Varying Signals to Improve Clinical Imaging

This technology includes a new technique to improve the fidelity of time-varying signals acquired in the dynamic contrast enhanced (DCE) imaging. This technique enhances the time-varying signals in a given DCE image series through deep convolutional neural networks (CNN) to learn the relationship of signal versus contrast concentration from other series of different contrast doses.

Mouse Xenograft Model for Mesothelioma

The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas.  Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

Method Of Identifying Inhibitors Of The Jak-STAT Signal Transduction Pathway

The invention provides identification methods for agents which inhibit the Jak-STAT signaling transduction pathway. Drugs identified by these methods are candidates for the treatment of proliferative disorders dependent on the Jak-STAT pathway, including those caused by HTLV-1. In addition, such agents may be potent immunosuppressive drugs with potential applications not only for organ transplantation but also for treatment of autoimmune diseases.

GATA-3 Reporter Plasmids for Revealing Underlying Mechanisms in Breast Cancer

GATA-3 is a transcription factor that is highly expressed in normal cells of the mammary luminal epithelium. GATA-3 plays a regulatory role in determining the fate of cells in the mammary gland. Disruption of GATA-3 expression leads to defects in the development of mammary cells, including an inability to differentiate properly into the correct cell type. GATA-3 function is also disrupted in various breast cancer models indicating that GATA-3 has tumor suppressive properties in normal cells.

Novel Fusion Proteins for HIV Vaccine

Development of successful HIV vaccine immunogens continues to be a major challenge.  Although gp120 was identified as having significant potential as a vaccine immunogen, attempts to elicit broadly neutralizing antibodies using recombinant gp120 failed.  The highly flexible gp120 may present numerous conformations to the humoral immune system that are not found on the viral spike.

Human Synovial Sarcoma Cell Line A2243

Synovial sarcoma is a cancer affecting mesenchymal cells in connective tissues. This rare cancer is typically linked to genetic abnormalities or exposure to radiation. Metastatic growth throughout the body can occur primarily through blood circulation. More than 90% of synovial sarcomas show a characteristic t(X;18)(p11;q11) translocation involving the SYT and SSX genes. The resulting SYT-SSX abnormal fusion protein causes misregulation of downstream gene expression, leading to tumor formation.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers. We are also interested in evaluating third generation tyrosine kinase inhibitor derivatives as modulators of ABC drug transporters to improve the efficiency of chemotherapy in animal (mouse) model system.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis.