Counteracting BECN2-mediated Drug Tolerance to Cannabinoids Through the Use of Autophagy Activation

This technology includes the use of autophagy upregulators such as ML246/metarrestin to counteract the tolerance that can build up through the therapeutic use of cannabinoids. Long-term administration of cannabinoids rapidly introduces tolerance and physical dependence, limiting its medical use and may lead to addiction and withdrawal symptoms. Cannabinoids mediate their effect by binding to and activating the cannabinoid receptor 1 (CNR1/CB1). Chronic exposure leads to CNR1 being targeted for degradation through a process of autophagy.

Small Molecule Inhibitors of the Ferroptosis Programmed Cell Death Pathway

This technology includes the identification and use of small molecules to rescue cells undergoing ferroptosis, a type of programmed cell death. These small molecules can be used as treatments in situations where epithelial cells are being damaged, including respiratory disorders, brain injury (including traumatic brain injury), renal injury, radiation-induced injury, and neurodegenerative disorders. Ferroptosis is a type of programmed cell death that is triggered by an increased presence of oxidants.

Development of a Polyclonal Antibody for Neuroligin 4 pThr707 and a Polyclonal Antibody for Neuroligin 1 pTHR739

This invention includes the generation and use of two polyclonal antibodies that specifically recognizes the phosphorylation site pThr707 of Neuroligin 4 and pThr739 of Neuroligin 1. A peptide of the site around the phosphorylation site was generated and injected into rabbits to create an immune response. Serum was collected from the rabbits that was then affinity purified. The specificity of the resulting polyclonal antibodies was then determined using biochemical techniques.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

OASIS: Automated brain lesion detection using cross-sectional multimodal magnetic resonance imaging

This invention is a novel statistical method for automatically detecting lesions in cross-sectional brain magnetic resonance imaging (MRI) studies. OASIS uses multimodal MRI from one image acquisition session and produces voxel-level probability maps of the brain that quantifies the likelihood that each voxel is part of a lesion. Binary lesion segmentations are created from these probability maps using a validated population-level threshold. In this application, fluid attenuated inversion recovery (FLAIR), proton density (PD), T2-weighted, and Tl-weighted volumes were used.

Methods and Compositions for the Inhibition of PIN1 for the Treatment of Immune, Proliferative and Neurodegenerative Disorders

This technology includes the compositions and methods for inhibiting PIN1 for the treatment of disorders characterized by elevated PIN1 levels (e.g., immune disorders, proliferative disorders, and neurodegenerative disorders) with small molecules. Pin1 dysregulation has been associated with a number of pathological conditions. In particular, PIN1 has been shown to promote oncogenesis by modulating several oncogenic signaling pathways and its overexpression has been shown to correlate with poor clinical outcome.

Stable Pharmaceutical Formulation of Propofol Hemisuccinate for Inhalation Delivery
Stable Pharmaceutical Formulation of Propofol Hemisuccinate for Inhalation Delivery

This technology includes a stable pharmaceutical formulation of propofol hemisuccinate for inhalation delivery to treat intractable epilepsy and migraine. The formulation can be used to treat a patient experiencing a seizure aura to prevent a motor seizure. Alternatively, the formulation can be used to treat an epileptic patient who is experiencing seizure clusters in an out-of-hospital or in-hospital setting. For migraines, the formulation can be used to treat a patient experiencing a migraine aura or early migraine to forestall the development of the full symptoms of a migraine headache.

CRISPR-Mediated Gene Inhibition and Neuronal Differentiation in Human Induced Pluripotent Stem Cell (iPSC) Lines

This invention includes human induced pluripotent stem cell (iPSC) lines that harbor a single copy dCas9-BFP-KRAB at the CLYBL safe harbor locus (mediating CRISPR inhibition of human gene expression) and/or a single copy of dox-inducible NGN2 at the AAVS1 locus (enabling the differentiation of the iPSCs into neurons). The CRISPR-mediated inhibition of human gene expression is maintained into the differentiated neurons, permitting functional studies of targeted genes in neurons.

Pink1 Knockout HeLa Cells for Studying Parkinson Disease

The technology includes Pink1 knockout HeLa cells that were generated using CRISPR technology. Pink1 is the key master gene to trigger degradation of mitochondria, mitophagy, and is implicated in familial Parkinson Disease. Knocking out Pink1 allows us to study the roles of Pink1 in many aspects of mitophagy and to display Pink1-dependent or independent activity. To create the HeLa cells, two CRISPR gRNAs targeting exon 1 and exon 7 of the Pink1 genome were used for transfection with Cas9 and GFP-C1 reporter. Cells were sorted 2 days after transfection and plated out in 96-well plates.

A HeLa Cell Line that Activates the Parkinson Disease-Related PINK1/Parkin Pathways in Mitochondria

This invention includes HeLa cells that are engineered to inducibly express a mutant form of ornithine decarboxylase that is targeted to the mitochondrial matrix and forms insoluble protein aggregates. The presence of unfolded proteins in the matrix causes the accumulation of the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin. These proteins play a critical role in degrading the mitochondria where they are expressed, a process call mitophagy. Mutations in these two genes are associated with familial Parkinson disease.