Novel Magnetic Resonance Spectroscopy (MRS) Technique to Quantify Brain Metabolites

With respect to quantification of metabolites in the brain, conventional methods of magnetic resonance spectroscopy (MRS) yield results that are highly variable and highly dependent on the sequence type being applied. This invention describes a novel MRS technique that involves preparing longitudinal steady states at different flip angles using trains of RF pulses interspersed with field gradients to quantify metabolites.

A Novel Reagent for Labeling PET Tracers at Trifluoromethyl Groups

The molecular imaging technique of positron emission tomography (PET) is an increasingly important tool in biomedical research and in drug discovery and development. Many small molecule drugs and potential PET radiotracers carry trifluoromethyl (CF3) groups. Because CF3 groups are generally considered to be metabolically stable, there is a strong interest in developing drugs with these groups.

Licensing Availability: Methods of Diagnosing and Treating CHAPLE, A Newly Identified Orphan Disease

This technology is directed towards a potential treatment for a new disease, CHAPLE (Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy), identified by NIAID researchers. CHAPLE is associated with GI symptoms and vascular thrombosis and is caused by loss-of-function variants in the gene encoding the complement regulatory protein CD55. The disease is caused by enhanced activation of the complement pathway and complement-mediated induction of intestinal lymphangiectasia and protein-losing enteropathy.

A New Class of Immunomodulatory Drugs for Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease caused by activated autoimmune T lymphocytes in patients resulting in inflammatory demyelination in the central nervous system. Current treatments are focused on functional control of these activated autoimmune T cells, but these treatments are non-specific T cell inhibitors and have serious, sometimes fatal side effects. A specific therapy aimed at eliminating these autoimmune T cells through restimulation-induced cell death (RICD) could cure the disease and overcome the fatal side effects of current therapies.

A Rapid Ultrasensitive Assay for Detecting Prions Based on the Seeded Polymerization of Recombinant Normal Prion Protein (rPrP-sen)

Prion diseases are neurodegenerative diseases of great public concern as humans may either develop disease spontaneously or, more rarely, due to mutations in their prion protein gene or exposures to external sources of infection. Prion disease is caused by the accumulation in the nervous system of abnormal aggregates of prion protein. This technology enables rapid, economical, and ultrasensitive detection of disease-associated forms of prion protein.

Assay for Predicting the Time of Onset of Niemann-Pick Disease Type C (NPC)

Niemann-Pick Disease, type C (NPC) is a rare, autosomal recessive, neurodegenerative disease. Approximately 95% of patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking. Mutation of NPC1 causes intracellular accumulation of unesterified cholesterol in late endosomal/lysosomal structures and marked accumulation of glycosphingolipids, especially in neuronal tissue. Thus, NPC patients generally present with hepatosplenomegaly (enlargement of liver and spleen) and neurological degeneration.

Methods of Synthesis of the Ketamine Analogs (2R, 6R)-kydroxynorketamine and (2S, 6S)-hydroxynorketamine for the Treatment of Pain and other Anxiety-related Disorders

This technology includes a method for synthesizing the ketamine analogs (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-hydroxynorketamine that may be useful for the treatment of pain, depression, anxiety, and related disorders. The drug ketamine was first used as an anesthetic but was found to be an effective treatment in a range of conditions, including paint, treatment-resistant bipolar depression, and other anxiety-related disorders. However, the routine use of ketamine is hindered by unwanted side effects, including the potential for abuse.

A Highly Efficient Astrocyte Differentiation Protocol for Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates induced pluripotent stem cells (iPSCs) exclusively into nociceptors (also called sensory neurons) under chemically defined conditions. The use of hPSCs, including hESCs and iPSCs, holds great promise for disease modeling, drug discovery, and cell therapy. However, efficient and highly reproducible protocols have not been developed for most cell types that are relevant and urgently needed for translational applications.

A Highly Efficient Nociceptor Differentiation Protocol for Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) exclusively into nociceptors (also called sensory neurons) under chemically defined conditions. The use of hPSCs, including hESCs and iPSCs, holds great promise for drug screening, disease modeling, toxicology, and regenerative medicine. However, efficient and highly reproducible protocols have not been developed for most cell types that are relevant and urgently needed for translational applications.

A High-throughput Protocol for Creation of Brain Region-specific Neural Spheroids for Disease Modeling and Drug Testing

This technology includes a method for creating functional, brain region-specific neural spheroids that can be used for disease modeling and therapeutic testing of compounds for neurological diseases. The developed protocol uses somatic cells, including iPSC-derived neurons, as well as astrocytes using means such as 96- or 384-well ultra-low attachment round-bottom plates. Spheroids have been generated using this method that model brain regions such as the ventral tegmental area and prefrontal cortex, which are implicated in Parkinson’s and Alzheimer’s disease.