Development and Use of O-linked beta-N-acetylglucosamine (O-GlcNAc) Transferase (OGT) Inhibitors for Multiple Conditions, Including Cancer

This technology includes the development and use of small molecules that inhibit O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT) for a variety of pathologies, including Alzheimer's disease, cancer, cancer, diabetes, and neurodegenerative disorders the treatment of cancer and as a potential antiviral. OGT is a ubiquitous enzyme that catalyzes the transfer of N-acetylglucosamine (GlcNAc) to the serine or threonine residues of nuclear and cytoplasmic proteins.

Astrocyte Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Potential Therapeutic Use

This technology includes an innovative method for differentiating astrocytes from neural stem cells (NSCs). The process involves using Life Technologies StemPro embryonic stem cell serum-free medium to initially guide NSCs towards a neuronal lineage. Over a period of 28-35 days, as the cells are continually passaged, neurons gradually die off, leading to the proliferation of astrocytes. By the end of this differentiation protocol, approximately 70% of the cells exhibit markers characteristic of mature astrocytes, specifically GFAP.