Automated Microscopic Image Acquisition, Compositing and Display Software Developed for Applied Microscopy/Cytology Training and Analysis
Method to Detect and Quantify In Vivo Mitophagy
This technology includes a transgenic reporter mouse that expresses a fluorescent protein called mt-Keima, to be used to detect and quantify in vivo mitophagy. This fluorescent protein was originally described by a group in Japan and shown to be able to measure both the general process of autophagy and mitophagy. We extended these results by creating a living animal so that we could get a measurement for in vivo mitophagy. Our results demonstrate that our mt-Keima mouse allows for a straightforward and practical way to quantify mitophagy in vivo.
Glial Cell Line-Derived Neurotrophic Factor for the Treatment of Neurodegenerative Diseases and Diabetes
The National Institute on Drug Abuse (NIDA) is seeking interested parties to license or co-develop GDNFOS peptides and non-coding RNAs as therapeutic agents for neurodegenerative diseases.
A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer
Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.
Single Source-Detector Separation Approach to Calculate Tissue Oxygen Saturation
Summary
The National Institute of Child Health and Human Development (NICHD) seeks partners and/or licensees to further develop and commercialize the miniaturized tissue oximeter for implementing the single source-detector separation algorithm in existing devices/systems to collect tissue oxygen saturation.
Fluorinated MU-Opioid Receptor Agonists
Summary:
Investigators at the National Institute on Drug Abuse seek co-development partners and/or licensees for collection of mu opioid receptor (MOR) agonists as alternatives for existing compounds.
Description of Technology:
Although existing opioids are excellent analgesics and useful as positron emission tomography (PET) radiotracers, they come with debilitating side effects. These include addiction, respiratory distress, hyperalgesia, and constipation. Therefore, there is a need for alternatives with lower adverse effects.
Intralipid as a Contrast Agent to Enhance Subsurface Blood Flow Imaging
This technology includes a blood flow imaging method that allows for a higher density of smaller particles to be detected. Current imaging methods that are based on Doppler measurements are limited by the discontinuity in the capillary flow in the space between red blood cells. The core technology is to use a scattering agent to enhance capillary flow or microcirculation. This technology has been tested for optical coherence Doppler tomography, but can be expended to any Doppler based flow imaging techniques such as laser speckle imaging.
Multichannel Individualized Seizure Therapy (MIST) Device
The Multichannel Individualized Stimulation Therapy (MIST) device is a multichannel electrical stimulation system that can be used for targeted, individualized electroconvulsive therapy (ECT), especially for treatment-resistant depression (TRD). Millions of individuals suffer from TRD, for which ECT is often the most efficacious and rapidly acting treatment option.
P2Y14 Receptor Antagonists for the Treatment of Inflammatory Diseases, Including Pulmonary and Renal Conditions and Chronic Pain
This technology includes the development of selective P2Y14R antagonists for the treatment of asthma, sterile inflammation of the kidney, diabetes, and neurodegeneration. The P2Y14 receptor (P2Y14R) is a target for the treatment of inflammatory diseases, including pulmonary and renal conditions. Selective P2Y14R antagonists have demonstrated efficacy in animal models of asthma, pain, diabetes, and acute kidney injury. However, the prototypical antagonist is not optimal for in vivo administration, as it displays a low oral bioavailability.