A Group of Compounds that Activate AMP-activated protein kinase (AMPK) that may Treat Niemann-Pick Disease Type C (NPC)

This technology relates to the identification and use of a group of compounds that activate the AMP-activated protein kinase (AMPK) and also effectively reduce lysosomal cholesterol accumulation in patients with Niemann-Pick disease Type C (NPC). Clinical trials are currently underway to determine the efficacy of beta-cyclodextrin in treating patients with NPC. A potential mechanism has been proposed indicating that beta-cyclodextrin activated AMP-activated protein kinase, leading to restoration of autophagy in cells from NPC patients.

Repurposing CDK Inhibitors for the Treatment of Zika Virus Infection

This invention includes the discovery and use of a group of CDK inhibitors that were found during a drug repurposing screen designed to find compounds that inhibit Zika virus caused cell death. The identified CDK inhibitors have all previously been used in clinical trials for other diseases, potentially reducing the long time course needed for new drug discovery and development.

Dopamine D3 Receptor Agonist Compounds, Methods of Preparation, Intermediates Thereof, and their Methods of Use

Due to the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. The development of subtype-selective pharmaceutical small molecules to activate (agonists) signals regulated by D2-like receptors has been especially difficult. 

Astrocyte Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Potential Therapeutic Use

This technology includes an innovative method for differentiating astrocytes from neural stem cells (NSCs). The process involves using Life Technologies StemPro embryonic stem cell serum-free medium to initially guide NSCs towards a neuronal lineage. Over a period of 28-35 days, as the cells are continually passaged, neurons gradually die off, leading to the proliferation of astrocytes. By the end of this differentiation protocol, approximately 70% of the cells exhibit markers characteristic of mature astrocytes, specifically GFAP.

Treatment of Alcoholism by Inhibition of the Neuropeptide Y Receptor

Aversive or anticraving medications are currently used to supplement behavioral treatment of alcohol dependence. However, there is a need for developing more effective medications than those available. Neuropeptide Y (NPY) is a neurotransmitter known for increasing appetite and possibly having a role in alcohol preference and dependence. This is likely to be mediated by activation of the post-synaptic NPY-Y1 receptor, but developing molecules suitable for human therapeutics that activate that receptor represents a major challenge.

Identification and Use of a Novel Functionally Selective GHSR1a Ghrelin Receptor Inhibitor, including NCGC00538279, for the Treatment of Food and Chemical Addiction

This technology includes a chemical series, including the NCGC00538279 compound, that selectively activates the GHSR1a G-protein pathway for calcium mobilization while only partially activating the beta-arrestin-2 translocation pathway. The resulting chemical series may be therapeutically valuable for addictive disorders. Activation of the GHSR1a G-protein pathway promotes production and secretion of multiple hormones, including insulin, growth hormone, and IGF1. Activation of the beta-arrestin-2 pathway stimulates dopamine production and may mediate addictive behaviors.

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research. 

Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro. 

Interleukin-27 Producing B-Cell Population and Uses Thereof

Summary: 
The National Eye Institute (NEI) seeks research co-development partners and/or licensees to advance the production and uses of interleukin-27 (IL-27) producing B-regulatory cell (i27-Breg) therapy for immune related autoimmune disorders. These disorders include but are not limited, to age-related macular degeneration (AMD), graft-versus-host disease (GVHD), multiple sclerosis (MS) and transplant rejection.