A Group of Compounds that Activate AMP-activated protein kinase (AMPK) that may Treat Niemann-Pick Disease Type C (NPC)

This technology relates to the identification and use of a group of compounds that activate the AMP-activated protein kinase (AMPK) and also effectively reduce lysosomal cholesterol accumulation in patients with Niemann-Pick disease Type C (NPC). Clinical trials are currently underway to determine the efficacy of beta-cyclodextrin in treating patients with NPC. A potential mechanism has been proposed indicating that beta-cyclodextrin activated AMP-activated protein kinase, leading to restoration of autophagy in cells from NPC patients.

Repurposing CDK Inhibitors for the Treatment of Zika Virus Infection

This invention includes the discovery and use of a group of CDK inhibitors that were found during a drug repurposing screen designed to find compounds that inhibit Zika virus caused cell death. The identified CDK inhibitors have all previously been used in clinical trials for other diseases, potentially reducing the long time course needed for new drug discovery and development.

Development of a Therapy for the Treatment of Zellweger Spectrum Disorder

This technology includes a method for selecting a therapeutic effective amount of one of two compounds (including naltriben and naltrin) for the treatment of Zellweger Spectrum Disorder (ZSD), or any disease associated with peroxisome dysfunction. The compounds were identified using a cell-image based high-content screening (HCS) assay to identify small molecules that enhance peroxisome assembly in immortalized skin fibroblasts obtained from a ZSD patient.

Development and Use of O-linked beta-N-acetylglucosamine (O-GlcNAc) Transferase (OGT) Inhibitors for Multiple Conditions, Including Cancer

This technology includes the development and use of small molecules that inhibit O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT) for a variety of pathologies, including Alzheimer's disease, cancer, cancer, diabetes, and neurodegenerative disorders the treatment of cancer and as a potential antiviral. OGT is a ubiquitous enzyme that catalyzes the transfer of N-acetylglucosamine (GlcNAc) to the serine or threonine residues of nuclear and cytoplasmic proteins.

Discovery of Proteasome Inhibitors to Target PMP22 Gene Expression for the Treatment of Charcot-Marie-Tooth Disease Type 1A

This technology includes the use of proteasome inhibitors, such as Bortezomib, for the treatment of the most prevalent form of Charcot-Marie-Tooth disease type 1A (CMT1A). Duplication of the peripheral myelin protein 22 (PMP22) gene, normally involved in myelination of the peripheral nervous system, is the causative agent in most forms of CMT1A. A drug discovery program was initiated and found that proteasome inhibitors can be used to target PMP22.

Mouse Model of Cobalamin A (cblA) Class Isolated Methylmalonic Acidemia (MMA) to Study New Therapies

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. Most affected individuals display severe multisystemic disease characterized by metabolic instability, chronic renal disease, and neurological complications. Patients with the cobalamin A (cblA) subtype of MMA can have variable presentations, spanning the full spectrum of MMA associated symptoms and pathology, yet always harbor an element of clinical and biochemical responsiveness to injectable vitamin B12.

Gene Therapy for Cobalamin C Deficiency (cblC) with Viable Mouse Models

Cobalamin C deficiency (cblC) is the most common inborn error of intracellular cobalamin metabolism and is caused by mutations in MMACHC, a gene responsible for processing and trafficking dependent enzymes: intracellular cobalamin, resulting in elevated methylmalonic acid and homocysteine and methionine deficiency. Disease manifestations include growth failure, anemia, cardial defects and progressive blindness.

Human Fibroblast Cell Lines from Patients with Gangliosidosis Diseases for the Screening of Disease Therapeutics

This technology includes cell lines from patients with gangliosidosis diseases for the screening of potential therapeutics. Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. GM1 gangliosidosis is an ultra-rare lysosomal storage disorder caused by mutations in galactosidase beta 1 (GLB1) that result in a deficiency of beta-galactosidase. GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by accumulation of GM2 ganglioside due to the absence or near absence of B-hexosamindase.

Human Fibroblast Cell Lines Heterozygous for Glucocerebrosidase (GBA1) Mutation N370S for the Study of Neurodegenerative Disorders and their Treatments

This technology includes six cell lines for the study of Glucocerebrosidase (GBA1) mutations which could be used for the evaluation and eventual treatments for conditions such as Gaucher's disease and Parkinson's disease. GBA1 is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides (derived mostly from ingested red and white blood cell membranes) in tissues, which is a major symptom of Gaucher disease.

Mouse Model Created Using Glucocerebrosidase-Deficient Neuronal Cell Line to Study Gaucher Disease Pathophysiology and Evaluate New Therapies

This technology includes a high-yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease (GD) to study pathophysiology and evaluate new therapies. GD is an autosomal recessive lysosomal storage disorder caused by loss-of function mutations in the GBA1 gene, which codes for the lysosomal hydrolase glucocerebrosidase (GCase).