Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

Small Molecule Inhibitors of Histone Demethylases for Treating Rhabdomyosarcoma (RMS) and Other Cancers

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and makes up 3% of all childhood cancers. Aveloar Rhabdomyosarcoma is the most aggressive subtype and is primarily established through a chromosomal translocation resulting in the fusion protein PAX3-FOXO1. Despite aggressive therapy, the 5-year survival rate for patients with high risk or recurrent Fusion Positive RMS (FP-RMS) is low (~30% and ~17%, respectively). Therefore, new therapies targeting the PAX3-FOXO1 oncogenic driver are urgently needed.  

Dopamine D3 Receptor Agonist Compounds, Methods of Preparation, Intermediates Thereof, and their Methods of Use

Due to the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. The development of subtype-selective pharmaceutical small molecules to activate (agonists) signals regulated by D2-like receptors has been especially difficult. 

Novel Biased Potent Opioid-Like Agonists as Improved Medications to Treat Chronic and Acute Pain

There are no analgesics to ameliorate chronic pain without adverse side-effects (e.g., respiratory depression, gastrointestinal effects, tolerance, dependence), thus forcing patients into a difficult choice of negative impacts on quality of life. Most of the analgesics used for chronic and acute pain are drugs such as oxycodone, morphine, oxymorphone, and codeine. All of these opioids have been subject to misuse; prescription drug abuse is a severe problem worldwide, causing high mortality and greatly increased emergency room visits.

Size-dependent brain distribution of macromolecular drug delivery platform

The blood brain barrier (BBB) is a specialized endothelium that prevents the uptake of substances from the systemic circulation into the central nervous system. This barrier, while protecting the sensitive physiological environment of the brain, is also a major impediment in administering therapeutics that need to pass through the BBB. A drug delivery platform that could deliver therapeutic agents directly to the brain is needed, and could have wide ranging significance in a variety of psychiatric, oncology, infectious, and neurodegenerative diseases.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Neurites of the central nervous system can be conceptualized as cylindrical pores with finite lengths and radii. In response to physical trauma, axons may assume a “beaded” morphology which alters their ability to conduct electrical impulses, impairing brain function. These microstructural changes are thought to underlie some of the cognitive defects observed in patients with traumatic brain injury (TBI). Current methods for characterizing traumatic brain injury (TBI) cannot provide microstructural detail on the 3-dimensional shape of axonal segments.

Methods of making and using dopamine receptor selective antagonists/partial agonists

Dopamine is a major neurotransmitter in the central nervous system and among other functions is directly related to the rewarding effects of drugs of abuse.  Dopamine signaling is mediated by D1, D2, D3, D4 and D5 receptors.  The dopamine D3 receptor is a known target to treat a variety of neuropsychiatric disorders, including substance use disorders (e.g. cocaine and opioid), schizophrenia and depression.

Multidimensional MRI Signature for Specific Detection of Traumatic Brain Injury In Vivo

Traumatic brain injury (TBI) represents a major medical, social and economic concern worldwide due to significant mortality – especially among younger populations – and long-term disabilities. Various pathological brain lesions (e.g., intracerebral bleedings, necrotic-ischemic lesions, tissue avulsion) are produced by impacting mechanical forces. Among these, diffuse axonal injury (DAI) is one of the most significant brain lesions typically associated with trauma. However, DAI is not necessarily linked with TBI exposure. Therefore, the term “traumatic axonal injury (TAI)” is commonly used.