High-Affinity Rabbit Monoclonal Antibodies for Cancer Treatment

Mesothelin is a cell surface protein that is highly expressed in aggressive cancers, such as malignant mesothelioma, ovarian cancer and pancreatic cancer, lung cancer, breast cancer, cholangiocarcinoma, bile duct carcinoma and gastric cancer.  Because of this selective expression, mesothelin is an excellent candidate for targeted therapeutics, such as monoclonal antibodies (mAbs) and chimeric molecules.  Current anti-mesothelin therapeutic mAb candidates bind to an epitope in Region I of mesothelin.  Unfortunately, Region I contains the interaction site MUC16/CA125, a mesothe

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Pancreatic cancer is the fourth most common cause of cancer deaths in the U.S. The overall 5-year survival rate is 8.5%. Glypican-1 (GPC1) is a cell surface heparan sulfate proteoglycan protein overexpressed in pancreatic cancer. Due to preferential expression, GPC1 represents a potential candidate for targeted therapy for pancreatic cancer and other GPC1-expressing cancers, such as prostate.

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Neuroblastoma is a rare pediatric cancer that affects one in every hundred thousand children under the age of fifteen in the United States. Current standards of care  are chemotherapy and surgery, followed by stem-cell treatments, radiation and anti-ganglioside antibody therapy, which yield an average three-year survival rate of 10-45%. This demonstrates a need for more effective therapies.

Software for Modeling Delivery and Penetration of Antibody Conjugates

The National Cancer Institute (NCI) seeks parties to license software for modeling the targeted delivery of anti-cancer agents in solid tumors.

The software models the permeability and concentration of intravenously administered antibody anti-cancer agent conjugates in solid tumors.  The models can be used to determine optimal dosing regimen of a therapeutic in a particular cancer type.  Thirty factors that affect delivery rates and efficiencies are analyzed as variables in generating the models.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Bacterial spores can be modified to display molecules of interest, including drugs, immunogenic peptides, antibodies and other functional proteins of interest (such as enzymes).  The resulting engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants.

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Neuroblastomas are the most common extracranial solid tumors in pediatric patients, with 700-800 new cases annually in the United States. Metastatic neuroblastomas have a five-year survival rate of 50% and account for 15% of all pediatric cancer deaths. As such, more effective treatments against high-risk neuroblastomas are urgently needed.

Single-domain monoclonal antibodies for the treatment of hepatocellular carcinoma

The National Cancer Institute seeks parties to license human monoclonal antibodies and immunoconjugates and co-develop, evaluate, and/or commercialize large-scale antibody production and hepatocellular carcinoma (HCC) xenograft mouse models. An advantage of these monoclonal antibodies as a potential therapeutic is their specificity, which would reduce deleterious side-effects. HCC is the most common form of liver cancer, and is among the more deadly cancers in the world. There is a need for new treatments that can be successfully applied to a large population of patients.

Antibody and Immunotoxin Treatments for Mesothelin-expressing Cancers

Mesothelin is a cell surface protein that is highly expressed in aggressive cancers such as malignant mesothelioma, ovarian cancer, pancreatic cancer, lung cancer, breast cancer, cholangiocarcinoma, bile duct carcinoma and gastric cancer. As a result, mesothelin is an excellent candidate for tumor targeted immunotherapeutics. However, the antibodies against mesothelin that are available for clinical trials are of murine origin. These antibodies have the potential to elicit immune responses in patients, which may adversely affect the ability to provide patients with repeated doses.