Cancer-reactive T cells from Peripheral Blood

Adoptive cell therapy (ACT) using genetically engineered T-cell receptors (TCRs) is a promising cancer treatment. These TCRs target genetic mutations unique to patients and play an important role in tumor regression. However, mutation-reactive T-cells and their TCRs can be difficult to identify and isolate from patients. Therefore, we need more efficient methods of isolating mutation-reactive T-cells for use with ACT. 

A Sensitive, High Throughput Pseudovirus-Based Papillomavirus Neutralization Assay for HPV 16 and HPV 18

Human Papilloma Viruses (HPV) is a very common virus; nearly 80 million people—about one in four—are currently infected in the United States. HPV is a group of more than 150 related viruses. Each HPV virus in this large group is given a number which is called its HPV type. HPV is named for the warts (papillomas) some that HPV types can cause. Some other HPV types can lead to cancer, especially cervical cancer.

Cancer Therapeutic Based on Hypoxia Inducible Factor 1 (HIF-1) Inhibitors

Hypoxia is a characteristic of many solid tumors resulting from accelerated cellular proliferation and inadequate vascularization. HIF-1 is a transcription factor critical for maintaining cellular homeostasis in, and adaptively responding to, low oxygen environments. HIF-1 becomes activated through binding to the transcriptional co-activator protein p300. Disruption of the HIF-1/p300 interaction could potentially modulate HIF-1 activity.

FIBP Knockout Potentiates Therapeutic Effects of T-cell Based Therapies in Solid Tumors

Despite recent breakthroughs in cancer immunotherapy, T-cell based therapies achieve limited efficacy in solid tumors. Immunosuppression, antigen escape and physical barriers to entry into solid tumors are issues faced. Identifying regulators in T-cell dysfunction remains challenging due to limitations of current screening platforms. 

Topoisomerase III (TOP3) Inhibitors as Antiviral and Anticancer Compounds based on Bisacridines

  • Topoisomerase 3B (TOP3B) is the only topoisomerase that can act on RNA as well as DNA. Thus, it is a target of interest for the development of cancer therapies and RNA viral infection therapies. TOP3B is not an essential gene for carcinogenesis, but a subset of cancer cells with pre-existing genome instability are particularly vulnerable to the inactivation of TOP3B. While inhibitors for other topoisomerases are among the most potent and widely used anticancer agents, there are no known inhibitors of TOP3B.

Anti-Py1235-Met Immunological Binding Reagent as Cancer Diagnostic

This technology consists of highly specific rabbit monoclonal antibodies reactive with phosphorylated tyrosine located at amino acid 1235 in the human MET sequence. Binding to this pYl235 residue is independent of the phosphorylation of other tyrosines in the vicinity (1230 and 1234), does not cross-react with these nearby phosphotyrosine residues, and does not occur when Y1235 is unphosphorylated.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Chimeric antigen receptors (CARs) with high affinity for mesothelin that can be used as an immunotherapy to treat cancers that express mesothelin, such as pancreatic cancer, ovarian cancer, and mesothelioma. The technology includes CAR constructs with one of three different mesothelin-specific antibody portions, including either the mouse-derived SS or SS1 antibody fragments or the human HN1 antibody fragment.

Small Molecule Inhibitors of Histone Demethylases for Treating Rhabdomyosarcoma (RMS) and Other Cancers

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and makes up 3% of all childhood cancers. Aveloar Rhabdomyosarcoma is the most aggressive subtype and is primarily established through a chromosomal translocation resulting in the fusion protein PAX3-FOXO1. Despite aggressive therapy, the 5-year survival rate for patients with high risk or recurrent Fusion Positive RMS (FP-RMS) is low (~30% and ~17%, respectively). Therefore, new therapies targeting the PAX3-FOXO1 oncogenic driver are urgently needed.