TRIAZOLE DERIVATIVES AS P2Y14 RECEPTOR ANTAGONISTS

The technology describes the composition of small molecule compounds that are antagonists of the P2Y14 receptor. Also provided are methods of using the compounds, including a method of treating a disorder, such as inflammation, diabetes, insulin resistance, hyperglycemia, a lipid disorder, obesity, a condition associated with metabolic syndrome, and asthma, and a method of antagonizing P2Y14 receptor activity in a cell.

Novel Antiviral—Griffithsin Derived from Algae—for Prophylaxis or Treatment of Rabies Infection

Rabies virus (RABV) infection leads to fatal encephalitis—inflammation of the brain—if left untreated. Millions of people survive RABV infection each year due to timely administration of post-exposure treatment, however, nearly 60,000 people die from rabies each year according to the World Health Organization. Obstacles to timely treatment for RABV infection include the high cost and burdensome storage requirements (i.e., refrigeration) of current post-exposure treatments (i.e., rabies immunoglobulin (RIG)).

The Use of Metarrestin for the Treatment of Pancreatic Cancer

This technology includes the use of the small molecule metarrestin (ML246) for the treatment of several types of pancreatic cancer. A subcellular structure called the perinucleolar compartment (PNC) is frequently found in metastatic tumors and cancer stem cells. Reduction of PNC prevalence followed by medicinal chemistry was used to identify metarrestin as a compound that reduces PNC prevalence without significantly impacting cell viability. In vitro and in vivo animal work have demonstrated desirable pharmacokinetic properties as well as a reduction in metastatic burden and extended survival.

Small Molecule Inhibitors of Lactate Dehydrogenase as an Anti-Cancer Therapy

This technology includes a novel pyrazole-based compound NCGC00274266 (MLS000714501) that inhibits LDH-A with an IC50 of approximately 20 µM with low efficacy that can be used as an anti-cancer therapeutic. Structure-activity relationship studies on this compound led to hydroxypryazole-based compounds and discovery that the hydroxypyrazole compound and related analogs demonstrated a strong metal-dependent activity.

Identification and Use of Heterocyclic Alcohol Compounds for the Treatment of SULT1A1-expressing Cancers

This technology includes the identification and use of heterocyclic alcohol compounds, including RITA and N-BIC, for the treatment of SULT1A1-expression cancers. A high-throughput screen (qHTS) was performed using >1,000 caner cell lines identified a compound called YC-1 (also called Lificiguat) that is effective across cancer cell types that express the phase 2 detoxifying enzyme SULT1A1.

Potency Assay for Membrane Transporter Protein-based Drugs Acting on Antioxidant, Redox, and Apoptosis Response Pathways

This technology includes a method of analyzing the potency of membrane transporter protein-based drugs acting on intracellular antioxidant and redox response pathways (and associated apoptosis pathways), wherein the drug delivery and activity is lipid associated. The present invention is a cell-based bioassay for measuring the bioactivity of drug substance and formulated drug product by determining the drug's dose-dependent inhibitory effects on 4 hydroxynonenal (4-HNE)-induced antioxidant response element (ARE) activity.

Treatment of primary hyperoxalurias with small molecule lactate dehydrogenase inhibitors such as WO2018005807A1

This technology includes the use of novel lactate dehydrogenase (LDH) inhibitors, including WO2018005807A1, for the treatment of primary hyperoxalurias (PHs). PHs are rare autosomal recessive disorders caused by overproduction of oxalate, leading to recurrent calcium oxalate kidney stone disease, and in some cases end-stage renal disease. One potential strategy to treat PHs is to reduce the production of oxalate by diminishing the activity of LDH, the proposed key enzyme responsible for converting glyoxylate to oxalate.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.

A Novel Oxygen-induced Expression Vector for Production of Recombinant Proteins in Escherichia Coli

This technology includes a new method to induce recombinant protein expression in E. coli through the activating the SoxS promoter by molecular oxygen. We previously discovered that the SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration mainly to protect the bacteria from possible oxygen damage. We hypothesized that the 16-fold increase in the expression of this regulon make it possible candidate for inducing the expression of recombinant proteins.