Mouse Model for the Preclinical Study of Metastatic Disease

The successful development of new cancer therapeutics requires reliable preclinical data that are obtained from mouse models for cancer. Human tumor xenografts, which require transplantation of human tumor cells into an immune compromised mouse, represent the current standard mouse model for cancer. Since the immune system plays an important role in tumor growth, progression and metastasis, the current standard mouse model is not ideal for accurate prediction of therapeutic effectiveness in patients.

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

The Transforming Growth Factor Beta (TGF-ß) ligands (i.e., TGF-ß1, -ß2, -ß3) are key regulatory proteins in animal physiology. Disruption of normal TGF-ß signaling is associated with many diseases from cancer to fibrosis. In mice and humans, TGF-ß activates TGF-ß receptors (e.g., TGFBR1), which activates SMAD proteins that alter gene expression and contribute to tumorigenesis.  Reliable animal models are essential for the study of TGF-ß signaling.

Mitotic Figures Electronic Counting Application for Surgical Pathology

Cancer diagnosis depends on the assessment of patient biopsies to determine tumor type, grading, and stage of malignancy. Pathologists visually review specimens and count mitotic figures (MF) in a variety of cancer types to help gauge aggressiveness, guide treatment, and inform patient prognosis. Current technology for recording MF counts in surgical pathology is lacking in objectivity, and enumeration of MF by microscopy can be error prone. In particular, a lack of systematic means for recording contributes to recognized variability.

Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex

The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target since disrupting c-Myc activity could be used as pan-chemotherapy. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Because c-Myc is a transcription factor, a rationally designed small molecule targeting c-Myc would be required to exhibit significant specificity.