Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) have developed orthotopic allograft models for pancreatic cancer that utilize low passage primary pancreatic adenocarcinoma cells or tumor fragments implanted into the cancer-free pancreata of recipient syngeneic immunocompetent mice. Tumor development in these models is more synchronized, latency is substantially shortened, and tumors develop only in one location, as pre-determined by the choice of a site for cells/tumor fragment implantation.

A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.

Methods of Detecting Loss of Heterozygosity and Damaging Mutations in Immune-Related Genes Using Liquid Biopsies

Summary: 
The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a liquid biopsy diagnostic assay capable of detecting loss of heterozygosity (LOH) and somatic mutations in genes important for antigen processing and presentation and interferon-γ response pathways.

Method for HLA LOH Detection in Liquid Biopsies

Human leukocyte antigen (HLA) LOH (LOH) is a known resistance mechanism by which cancers evade T cell receptor-(TCR-)based immunotherapies. This class of therapies includes immune checkpoint inhibition (ICI, e.g., Pembrolizumab), engineered TCR (T cell receptor)-T cell adoptive transfer, tumor infiltrating lymphocytes (TIL), T-cell engagers, and other modalities. Dozens of therapies in this category were developed with many in clinical trials. The resistance mechanism noted here, HLA LOH, causes these therapies to fail.

Zinbryta® for Treatment of Relapsing Multiple Sclerosis

The 2017 Deals of Distinction™ Award was presented to National Institutes of Health, (NIH) along with its corporate partners, AbbVie and Biogen, for a license agreement related to the development and launch of Zinbryta® for treatment of relapsing multiple sclerosis (MS)   The award, one of the most prestigious for technology transfer, was given to NIH and its partners at the Licensing Executives Society Annual Meeting in Chicago, Illinois.