A Mouse Model for Type 2 Diabetes

Diabetes affects over 120 million people worldwide (16 million in the US) and is a major health problem with associated health costs estimated at almost $100 billion dollars. Type 2 diabetes affects as many as 10% of the population of the Western World (with 15 million patients in the US alone) and arises from a heterogeneous etiology, with secondary effects from environmental influences. Risk factors for type 2 diabetes include obesity, high blood pressure, high triglycerides and age.

Regulation of RNA Stability

This invention relates to the discovery that tristetraprolin (TTP) can promote the poly(A)RNase (PARN) mediated deadenylation of polyadenylated substrates containing AU-rich elements (AREs). As one aspect of the invention, the inventors have developed a cell free system that may be used for the purposes of assessing the effects of the various system components or their derivatives (i.e. AREs, PARN, or TTP) on the deadenylation process or the effects of various test agents on the deadenylation process.

Full-Length cDNA Clone Representing the Consensus Sequence of the RNA Genome of a Human Norovirus (strain MD145-12) That Encodes Biologically Active Proteins

The invention provides for a full-length cloned cDNA copy of the RNA genome of a predominant norovirus strain (Genogroup II.4) designated MD145-12 that was associated with human gastrointestinal illness. The noroviruses, which were formerly known as "Norwalk-like" viruses are estimated to cause 23 million cases of acute gastroenteritis in the USA each year. The virus has been designated into category B of the CDC biodefense-related priority pathogens because it can be used as an agent of bioterrorism.

Contrast Agent Enhancement of Chemical Exchange Dependent Saturation Transfer (CEDST) MRI

Available for licensing is an MRI image improving system wherein at least one contrast agent is administered to a subject in amounts effective to perform chemical exchange dependent saturation transfer (CEDST) MRI analysis.

Examples of contrast agents suitable for administration as exogenous contrast agents include at least one functional group bearing a proton capable of chemical exchange. Examples of these functional groups include, without limitation, amides, amines, and carboxyl, hydroxyl, and sulfhydryl groups.

Reporter Assay for Detection and Quantitation of Replication-Competent Gammaretrovirus

Gammaretroviral vectors were the first viral gene-therapy vectors to enter clinical trials and remain in use. One potential hazard associated with the use of such vectors is the presence of replication-competent retroviruses (RCR) in the vector preparations – either as a result of: 1) recombination events between the plasmids used for vector production, 2) interactions between the plasmids and endogenous retroviral sequences in the packaging cell lines, or 3) as a result of contamination in the laboratory.

Efficacious Fluorinated Cytidine Analog Cancer Therapeutic With Low Toxicity In Animal Studies

Cytidine analogs remain an area of active drug discovery and development, with five FDA approved drugs for the treatment of acute myeloid leukemia (AML). Two of these drugs, azacitidine (Vidaza®) and decitabine (Dacogen®), which were approved for myelodysplastic syndromes in 2004 and 2006, respectively, inhibit the DNA maintenance methyltransferase DNMT1. Because of the general toxicity of azacitidines, other nucleoside analogs are favored as therapeutics.

T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at 10-1000 µCi and higher.

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Hematopoietic and pluripotent stem cells can be differentiated into T cells with potential clinical utility. Current approaches for in vitro T cell production rely on Notch signaling and artificial mimicry of thymic selection. However, these approaches result in unconventional or phenotypically aberrant T cells; which may lead to unpredictable behavior in clinical use. Thus, there exists a need for improved methods of generating conventional T cells in vitro from stem cells.
 

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Peptides corresponding to transmembrane domains of a number of integral proteins were discovered to spontaneously self-assemble in aqueous solutions into stable and remarkably uniform nanoparticles.  Researchers at the NCI’s Cancer and Inflammation Program have developed fully synthetic, peptide-based, virus-like nanoparticles capable of delivering cytotoxic, radioactive, and imaging agents. 

Structure and function of tumor-target self-assembling particles: