Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research. 

Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro. 

MADCO-Accelerated Multidimensional Diffusion MRI

Although multidimensional diffusion/relaxation NMR experiments are widely used in materials sciences and engineering applications, preclinical and clinical MRI applications of these techniques were not feasible. Moreover, higher-field MRI scanners posed another obstacle to translation of this NMR method. Their specific absorption rate (SAR) limits the use of multi-echo or CPMG pulse trains, so that the large amounts of data required by these methods cannot be collected in vivo due to exceedingly long scan times.

Isotropic Generalized Diffusion Tensor MRI

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have developed a method implemented as pulse sequences and software to be used with magnetic resonance imaging (MRI) scanners and systems. This technology is available for licensing and commercial development. The method allows for measuring and mapping features of the bulk or average apparent diffusion coefficient (ADC) of water in tissue – aiding in stroke diagnosis and cancer therapy assessment.

Radiographic Marker for Portable Chest and Abdominal X-Rays

The NIH Clinical Center seeks parties interested to license a method and apparatus that can significantly improve the diagnostic performance of portable chest (CXR) and abdominal x-rays.  This device (see image below) quantifies angulation of a patient to provide for a better comparison of day-to-day improvement. Potential applications include portable chest and abdominal x-rays performed at patient's hospital bedside.

Development Status:

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway regulates a multitude of biological processes including cell proliferation, apoptosis, differentiation, tissue homeostasis, and stem cell functions. This axis has been recently listed as one of the top 10 signaling pathways altered in human cancer. Its role in modulating cell growth and proliferation is mediated by the activation of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding domain (TAZ).

A Preclinical Model for Mutant Human EGFR-driven Lung Adenocarcinoma

Previously described epidermal growth factor receptor- (EGFR) driven tumor mouse models develop diffuse tumors, which are dissimilar to human lung tumor morphology and difficult to measure by CT and MRI scans. Scientists at the National Cancer Institute (NCI) have developed and characterized a genetically engineered mouse (GEM) model of human EGFR-driven tumor model (hEGFR-TL) that recapitulates the discrete lung tumor nodules similar to those found in human lung tumor morphology.

A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.

Molecular Nanotags for Detection of Single Molecules

Biological nanoparticles, like extracellular vesicles (EVs), possess unique biological characteristics making them attractive therapeutic agents, targets, or disease biomarkers. However, their use is hindered by the lack of tools available to accurately detect, sort, and analyze. Flow cytometers are used to sort and study individual cells. But, they are unable to detect and sort nanomaterials smaller than 200 nanometers with single epitope sensitivity.

Enhanced Antigen Reactivity of Immune Cells Expressing a Mutant Non-Signaling CD3 Zeta Chain

Immunotherapy is a cutting-edge new category of treatment that aims to harness and, in some cases, modify the patient’s own immune cells to improve their ability to cure diseases. It can be an effective approach for a variety of conditions, ranging from cancer to inflammatory diseases.  However, a number of obstacles to the overall success of immunotherapy still exist.  For example, reactivity against a target antigen can be attenuated or the lifespan of the “modified” immune cells can be too short.

Levonorgestrel Butanoate Formulation and Methods Relating Thereto

This invention is a potential subcutaneous or intramuscular progestin-only, injectable contraceptive for women. Forty-five percent (45%) of pregnancies in the United States are unintended. In this group, one-third of reproductive age women are obese – increasing the risk of diabetes, hypertension and venous thromboembolism (VTE). All these are conditions for which most hormonal methods are contraindicated. Thus, additional safe and effective injectable contraceptive options are needed.