Polyclonal Antibodies for the Specialized Signaling G protein, Gbeta5

Researchers at NIDDK have developed polyclonal antibodies against the G protein, Gbeta5. Gbeta5 is a unique and highly specialized G protein that exhibits much less homology than other Gbeta isoforms (~50%) and is preferentially expressed in brain and neuroendocrine tissue. It is expressed prominently in the neuronal cell membrane, as well as in the cytosol and nucleus. Although this distribution pattern suggests that Gbeta5 may shuttle information between classical G protein-signaling elements at the plasma membrane and the cell interior, its function in the brain is largely unknown.

A Method to Expand a Population of Regulatory T Cells Optimal for the Treatment of Autoimmune Diseases

The transfusion of regulatory T cells (Tregs) has been used in the clinic to successfully prevent graft vs. host disease and is currently being evaluated in the treatment of other autoimmune diseases, such as organ graft rejection, type 1 diabetes and multiple sclerosis. Prior to transfusion, adoptive regulatory T cell transfer requires the expansion of regulatory T cells in culture; this results in a mixed population of regulatory T cells that limits the effectiveness of the transferred cells.

Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Glucocorticoid-induced TNFR Family-Related Receptor Ligand (GITRL) Antibodies for Diagnosis and Treatment of Immune System Disorders

This technology provides novel antibodies and methods for diagnostics and treatment of disorders arising from dysregulation of the immune system using antibodies directed against glucocorticoid-induced tumor necrosis factor receptor family-related receptor ligand (GITRL). Also available are hybridomas producing anti-mouse GITRL monoclonal antibodies (clone 5F1).

Derivatives of Docosahexaenoylethanolamide (DEA) for Neurogenesis

The invention pertains to derivatives of docosahexaenoylethanolamide (synaptamide or DEA) and their use in inducing neurogenesis, neurite growth, and/or synaptogenesis. As such, these DEA derivatives can be used as therapeutics for neurodegenerative diseases such as traumatic brain injury, spinal cord injury, peripheral nerve injury, stroke, multiple sclerosis, autism, Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis. The DEA derivatives of the invention have increased potency and hydrolysis resistance as compared to native DEA.

Background-Free Fluorescent Nanodiamond Imaging

Available for licensing and commercial development are intellectual property rights covering a method of imaging a biological specimen (e.g., human tissue) using fluorescent nanodiamonds implanted into the subject of interest, applying a magnetic field to said subject and producing a resultant image by a net juxtaposition of a second acquired image. This process suppresses the background and permits selective imaging of the nanodiamonds in the presence of background fluorescence that exceeds the signal from the nanodiamonds.

Highly Potent and Selective Deubiquitinating Enzyme Inhibitor

Available for licensing are inhibitors that target the USP1/ UAF1 deubiquitinating enzyme (DUB) complex. The FDA approval and commercial success of Velcade®, a small molecule proteasome inhibitor, has established the ubiquitin-proteasome system (UPS) as a valid target for anticancer treatment. However, proteasome inhibitors in general suffer from a narrow therapeutic index and acquired resistance. A promising alternative to proteasome inhibition has been to target the enzymes upstream of proteasome-mediated protein degradation, i.e.

Super-Resolution Fluorescence Enhanced Imaging using Bleaching/Blinking Assisted Localization Microscopy (BALM)

The invention relates to systems and methods for localization microscopy for superresolution imaging of fluorescent molecules. The method utilizes intrinsic bleaching/blinking properties of fluorophores in which superresolution is achieved by capturing successive images and subtracting from each either the subsequent image. The location of a single fluorescent molecule can be identified when the molecules either photobleach, blink off, or blink between successive images using a higher magnification lens to achieve a smaller pixel size.