Instant Total Internal Reflection Fluorescence/Structured Illumination Microscopy (instant TIRF/SIM)

This technology includes a method which enables high-speed, super-resolution microscopy at a very high signal-to-noise ratio (SNR), for biological applications within ~200 nm (the evanescent wave decay length) of a coverslip surface. Instant TIRF/SIM may be implemented simply by modifying and adding to the excitation optics that are already present within a conventional instant SIM design. We enforce TIRF excitation by removing all wave vectors that propagate into the objective lens at sub-critical angles.

Radiotherapy and Imaging Agent-based on Peptide Conjugated to Novel Evans Blue Derivatives with Long Half-life and High Accumulation in Target Tissue

This technology includes a newly designed, truncated Evans Blue (EB) form which allows labeling with metal isotopes for nuclear imaging and radiotherapy. Unlike previous designs, this new form of truncated EB confers site specific mono-labeling of desired molecules. The newly designed truncated EB form can be conjugated to various molecules including small molecules, peptides, proteins and aptamers to improve blood half-life and tumor uptake, and confer better imaging, therapy and radiotherapy.

Identification of a Novel Parvovirus for Vaccine Development and Use as a Diagnostic Tool

This technology includes a procedure for novel virus identification in a variety of human specimens by solexa high-throughput sequencing, which allows for the screening a large number of clinical specimens for novel virus discovery in a highly efficient and relatively economical method. By using this technique, we have successfully identified a novel parvovirus from samples of seronegative hepatitis patients.

Neural Stem Cells from an iPSC Line Ubiquitously Expressing Green Fluorescent Protein for Basic Science Research and Cell Line Tracking

This technology involves neural stem cells (NSCs) derived from pluripotent stem cells (PSCs) that can differentiate into neurons and glia. The key feature of this technology is the CY2 EEF1A1 GFP iPSC line, which includes a green fluorescent protein (GFP) expressed under the EEF1A1 promoter, leading to its ubiquitous expression in cells. This characteristic makes the NSCs and the neural cells differentiated from this line exhibit green fluorescence. Such cells, when transplanted into animal models like mice and rats, can be easily tracked due to their fluorescence.

Generation of AAVS1 and C13 “Safe Harbor” Transcription Activator-life Effector Nucleases (TALENs) for Drug Screening or Gene Therapy Development

This technology includes AAVS1 and C13 “safe harbor” transcription activator-life effector nucleases (TALENs) for drug screening or gene therapy applications. TALENs are engineered sequence-specific DNA endonucleases that can significantly enhance genome-editing efficiency by >100-1000 folds. “Safe harbor” such as AAVS1 safe harbor and C13 safe harbor is genome locus that allows robust and persistent transgene expression with no or minimal interference of endogenous gene expression and cell properties.

Novel Methods for Reducing Inflammation and Treating Diseases such as Parkinson's and Alzheimer's Disease

Microglia activation leads to inflammation mediated dopaminergic degeneration in the brain of patients with Parkinson and Alzheimer's Disease. Thus Identification of drugs that reduce microglia activation could prevent or reverse neuronal degeneration in these diseases and other degenerative CNS disorders.

Agonist Epitopes for Renal Cell Carcinoma

Approximately 30,000 patients are diagnosed with renal cell carcinoma (RCC) each year in the United States, and an estimated 12,000 patients die of this disease. Most patients are diagnosed with advanced local disease or metastatic disease. Metastatic RCC carries a poor prognosis with median survivals in the range of 10-12 months. Drugs that inhibit VEGF receptor tyrosine kinases such as Sorafenib and Sunitinib have recently been approved by the FDA to treat metastatic RCC.