Conditional Cell Immortalization Plasmid for Basic Science Research

This technology includes a novel plasmid design for cell immortalization. It uniquely combines the conditional activation of human telomerase and c-myc genes through cumate addition, a method distinct from traditional immortalization techniques which commonly use SV40 T-antigen, telomerase, or c-myc. This plasmid also includes a GFP reporter and a puromycin resistance gene, enhancing the efficiency of the immortalization process.

Resolution Doubling with Digital Confocal Microscopy

This technology includes a microscopy method that reduces the speed penalty at least 1000-fold, while retaining resolution improvement. A Digital mirror device (DMD) or sweptfield confocal unit is used to create hundreds to thousands of excitation foci that are imaged to a sample mounted in a conventional microscope and record the resulting emissions on an array detector. Detection of each confocal spot is done in our proprietary software, as is the processing and deconvolution that is used for a 2x resolution enhancement.

Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19

This technology includes an IgA antibody, specifically designed to target the receptor binding domain of SARS-CoV-2, the virus causing COVID-19. Administered intranasally, this antibody has potential neutralizing activity, aiming to prevent COVID-19. IgA, an antibody class present in mucosal areas, plays a crucial role in immune defense at the initial site of viral infection. The primary application of this technology is envisioned as a therapeutic nasal spray, intended to prevent SARS-CoV-2 infection, particularly in high-risk populations.

Accelerating Multiview Registration and Iterative Deconvolution to Improve Spatial Resolution and Contrast in Fluorescence Microscopy

This technology includes algorithms and software that improve the speed of iterative deconvolution, a common method for improving spatial resolution and contrast in fluorescence microscopy images. These algorithms also improve the registration of multiview datasets, and apply deep learning to accelerate spatially varying deconvolution.

Transgenic Mouse Expressing Cre for the Development for Delivery of Gene Therapy

This technology includes a mouse model containing a hypothetical, previously undescribed, gene that we have proven is expressed in hair cells of the inner ear and few other tissues in the body. The hair-cell limited expression of Cre is a genetic tool for creating conditional mutations affecting hair cells almost exclusively. Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates.

Antibodies to TMC1 Protein for Hearing Loss

This technology includes antibodies for TMC1 protein as a treatment for hearing loss. TMC1 is one of the common genes causing hereditary hearing loss. Our laboratory used synthetic peptides corresponding to the TMC1 protein to immunize rabbits. The resulting antisera were shown to bind to TMC1 protein expressed in heterologous expression systems. TMC1 protein is required for the transduction of sound into electrical impulses in inner ear sensory cells.

Affinity Purified Polyclonal Antibody Against Vangl2 (Van Gogh-like) as a Research Tool Product

This technology includes an antibody that enables the identification and isolation of the protein and protein partners of Vangl2 for application by western blotting, immunoprecipitation and immunocytochemistry. Because planar cell polarity signaling disruption leads to direct or indirect pathologies including malformation of the neural tube, mental retardation, disruption of sensory functions (hearing, balance, vision), cancers (polykystic kidneys disease), or cardiac

A BL21 (ED3) Codon Plus Competent Cell-derived Bacterial Strain for Research Use

This technology includes a bacterial strain derived from BL21 (ED3) CodonPlus Competent Cells containing an expression vector for human POLR2C gene for research purposes. The bacterial strain can be used to produce the full-length human RNA polymerase II subunit, RPB3 protein, which can be in turn isolated and purified.

Developing a Stable Cell as a Screening Tool for Environmental Chemicals

This technology includes a stable cell line (293T2-PGC) which has an intact PGC-1 alpha/ERR-alpha pathway to screen for environmental chemicals. The estrogen-related receptor alpha (ERR-alpha) and proliferator-activated receptor gamma coactivator - 1alpha (PGC-1 alpha) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the environmental chemicals that could disrupt or modulate this pathway leading to adverse health effects.