Figla-Cre Transgenic Mice Expressing Myristoylated EGFP in Germ Cells as a Model for Investigating Perinatal Oocyte Dynamics

This technology includes a transgenic mouse model which can be used to study perinatal oocyte dynamics. In the first two days after birth, the number of primordial ovarian follicles and their germ cells undergo a major decrease. The mechanism for this decrease was studied. Ablation of FIGLA (Factor in the germline, alpha), a basic helix-loop-transcription factor, results in massive perinatal oocyte loss. A transgenic mouse line was established, Figla-EGFP /Cre, in which EGFP and Cre recombinase are expressed just before birth in germ cells.

Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Adenosine Kinase for the Prevention of Seizures

This technology includes new nucleoside inhibitors containing rigid rings that provide high potency for use as antiepileptic drugs. Adenosine kinase (AdK) inhibitors raise the level of endogenous adenosine, particularly in disease states, and are of interest for the potential treatment of seizures and neurodegenerative and inflammatory conditions.

Vectors for the Treatment of Sickle Cell Disease and Beta Thalassemia

This technology includes lentivirus vectors to be used to treat sickle cell disease and beta thalassemia. (i) Lin28A or Lin28B vectors designed for erythroid-specific expression using EKLF1, SPTA1, or similar erythroid-specific regulatory elements will be used to transduce hematopoietic stem cells isolated from humans with sickle cell disease or beta-thalassemia syndromes.

Adenosine Receptor Binding Compounds with Subtype and Functional Selectivity for Therapeutic Development

This technology includes adenosine receptor binding compounds which could potentially be used for development of more selective and safe treatment of cardiovascular, psychiatric and neurodegenerative disorders. Though adenosine has been extensively studied as a primary chemical scaffold for adenosine receptor agonists, very little structure activity data exist for C5' substitution. This technology presents novel rationally designed small molecule compounds capable of selective binding to adenosine receptor (subtypes A2a, A1, A2b and A3) and inducing effector-biased downstream signaling.

Plasmid for the Study of Bam Complex and Screening of Therapeutic Molecules

This technology includes a plasmid (designated pJH114) that encodes all five subunits of the E. coli Bam (barrel assembly machine) complex under the control of an inducible promoter to be used in the study of the Bam and screen for therapeutic small molecules. The Bam (barrel assembly machine) complex is a highly conserved heterooligomer that catalyzes the integration of membrane proteins that have a beta barrel structure into the outer membrane of Gram-negative bacteria. Research suggests that this complex is essential for the viability of most, if not all bacteria in this class.

Methods for Using Modulators of Extracellular Adenosine or an Adenosine Receptor To Enhance Immune Response and Inflammation

Local inflammation processes are crucially important in the host defense against pathogens and for successful immunization because proinflammatory cytokines are necessary for initiation and propagation of an immune response. However, normal inflammatory responses are eventually terminated by physiological termination mechanisms, thereby limiting the strength and duration of immune responses, especially to weak antigens. The inventors have shown that adenosine A2a and A3a receptors play a critical role in down-regulation of inflammation in vivo.

Minibody for Conditioning prior to Hematopoietic Stem Cell and Progenitor Cell Transplantation

Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Conditioning regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents and radiation. However, these regimens are associated with significant morbidity and mortality, and cannot be used safely in elderly or subjects with comorbidities.

Closed-ended Linear Duplex DNA (CELiD or ceDNA) for Non-viral Gene Transfer

This technology includes an alternative source of plasmid DNA produced in eukaryotic cells for non-viral gene transfer, which represent a novel eukaryotic alternative to bacterial plasmid DNA. Once introduced into non-dividing cells, ceDNA persists and transgene expression remains stable whereas plasmid (p) DNA is lost. The ceDNA and transfection reagent complex is nonimmunogenic allowing re-administration as needed: recombinant adeno-associated virus (rMV) is immunogenic precluding repeated administration.