Methods of Inducing Deacetylase Inhibitors to Promote Cell Differentiation and Regeneration

The present invention discloses a method of enhancing progenitor cell differentiation, including enhancing myogenesis, neurogenesis and hematopoiesis, by contacting a progenitor cell with an effective amount of a deacetylase inhibitor (DI). The progenitor cell can be part of cell culture, such as a cell culture used for in vitro or in vivo analysis of progenitor cell differentiation, or can be part of an organism, such as a human or other mammal.

Stem Cell Factor-responsive FcepsilonRI Bearing Human Mast Cell Line LAD2

A human mast cell line LAD2 that more closely resembles normal in vivo and in vitro human mast cells by expressing functional FcepsilonRI receptors and responding to stem cell factor (SCF) with proliferation, as described in Leuk Res. 2003 Aug;27(8):677-82 and developed by the laboratory of Dr. Dean Metcalfe at the National Institute of Allergy and Infectious Diseases.  This cell line also releases mediators by cross-linking FcgammaRI (CD64) receptors and express FcgammaRII (CD32).

Modified Defensins and Their Use

The ubiquitous use of antibiotics has resulted in the selection of bacteria that are relatively resistant to these drugs. Furthermore, few drugs are effective against viral and fungal microorganisms. There is therefore a continuing need to identify novel agents that reduce or inhibit the growth of such microorganisms, or to identify ways of modifying existing agents in order to give them superior antimicrobial activities, or to identify agents that may recruit inflammatory cells.

Tryptophan as a Functional Replacement for ADP-ribose-arginine in Recombinant Proteins

Bacterial toxins such as cholera toxin and diphtheria toxin catalyze the ADP-ribosylation of important cellular target proteins in their human hosts, thereby, as in the case of cholera toxin, irreversibly activating adenylyl cyclase. In this reaction, the toxin transfers the ADP-ribose moiety of Nicotinamide Adenine Dinucleotide (NAD) to an acceptor amino acid in a protein or peptide. ADP-ribosylation leads to a peptide/protein with altered biochemical or pharmacological properties. Mammalians proteins catalyze reactions similar to the bacterial toxins.

Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1, 2, 3, and 4

The invention relates to a dengue virus tetravalent vaccine containing a common 30-nucleotide deletion (delta30) in the 3'-untranslated region (UTR) of the genome of dengue virus serotypes 1, 2, 3, and 4. The previously identified delta30 attenuating mutation, created in dengue virus type 4 (DEN4) by the removal of 30 nucleotides from the 3'-UTR, is also capable of attenuating a wild-type strain of dengue virus type 1 (DEN1).

4G10, a Monoclonal Antibody Against the Chemokine Receptor CXCR4, Raised Against a Synthetic Peptide of 38 Residues in Length Derived from the N-terminal Sequence of CXCR4

This invention identifies a monoclonal antibody (4G10) against the chemokine receptor CXCR4 and is a mouse IgG1 antibody. CXCR4 has been identified as a co-receptor mediating entry of HIV-1 into T cells. Subsequently, CXCR4 has been implicated in normal physiological functions, including activation of B cells and B cell progenitors and guiding their migration into the bone marrow (via its ligand SDF-1). CXCR4 also functions in T cell progenitor migration and neural progenitor stem cell activation.

Novel Acylthiol Compositions and Methods of Making and Using Them Against HIV

This invention provides a novel family of acylthiols and uses thereof. More specifically, this invention provides effective inhibitors of HIV that selectively target its highly conserved nucleocapsid protein (NCp7) by interacting with metal chelating structures of a zinc finger-containing protein. Because of the mutationally intolerant nature of NCp7, drug resistance is much less likely to occur with compounds attacking this target.