Method for Direct Identification of Neoantigen-Specific TCRs from Tumor Specimens by High-Throughput Single-Cell Sequencing

Cancer immunotherapy approaches, such as adoptive cell transfer (ACT), proved effective against many cancer types. Yet, post-treatment analyses of ACT have suggested that efficacy may be enhanced by increasing the percentage of neoantigen-reactive T cells in the infused product. Neoantigens are new proteins that form on cancer cells when certain mutations occur in tumor DNA. Current techniques for identifying neoantigen-specific TCRs in T cell expression are labor-intensive, time-consuming and technically challenging.

PIM-Targeted PROTACs

Proviral Integration for the Moloney murine leukemia virus (PIM) kinases are overexpressed in many solid cancers – including prostate, breast, colon, endometrial, gastric and pancreatic. High of PIM1 expression is predictive of poor survival in multiple cancer types. While several selective pan-PIM inhibitors were developed and tested in clinical trials, all ultimately increased PIM1-3 protein levels and developed intrinsic resistance. 

Novel Furoquinolinediones as Inhibitors of TDP2 and Their Potential Use to Treat Cancer

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is an enzyme that playings a critical role in repairing nucleic acid lesions, namely by repairing trapped DNA cleavage complexes. TDP2 repairs topoisomerase (TOP2)-mediated DNA damage induced by chemotherapeutic agents and removes endogenous TOP2-DNA cleavage complexes. Further, TDP2 deficiency potentiates the antiproliferative activity of TOP2 inhibitors. This suggest that combination therapies consisting of TDP2 and TOP2 inhibitors have a synergistic effect on tumor tissues.

Multichannel Individualized Seizure Therapy (MIST) Device

The Multichannel Individualized Stimulation Therapy (MIST) device is a multichannel electrical stimulation system that can be used for targeted, individualized electroconvulsive therapy (ECT), especially for treatment-resistant depression (TRD). Millions of individuals suffer from TRD, for which ECT is often the most efficacious and rapidly acting treatment option.

Novel Codon-Optimized MUT Gene Therapeutic for Methylmalonic Acidemia (MMA)

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Synthesis and Use of Positive Allosteric Modulators to Modify D1 Dopamine Receptor Activity

This technology relates to the creation and use of newly identified ligands to the D1 dopamine receptor (D1R). The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. These ligands are positive allosteric modulators (PAMs) that bind to the dopamine receptor at a site other than where dopamine binds and causes the receptor to have an increased response.

Identification of a novel and selective D3 dopamine receptor-selective agonist

This technology relates to the description and therapeutic use of a small molecule that selectively binds to and activates the D3 dopamine receptor. Dopamine receptors (DARs) are members of the G protein-coupled receptor (GPCR) superfamily that play a critical role in cell signaling processes, especially modulating the transfer of information within the nervous system. Members of the DAR subfamilies share high sequence homology, especially the D2 and D3 DARs. Most currently available dopaminergic drugs cross-react with both subtypes to varying degrees.

Mouse Model for Study of Diabetic Nephropathy and Role of Soluble Epoxide Hydrolase

Diabetic nephropathy (DN) is the leading cause of renal failure and is characterized by proteinuria that progresses to renal inflammation and decline in the glornerular filtration barrier (GFB). Podocytes are specialized epithelia cells in the glomerular capsule that have a role in filtration of blood and maintaining the integrity of the GFB; dysfunction of these cells plays a significant role in the pathogenesis of DN. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has beneficial effects in inflammatory diseases.