Immunogenic Antigen Selective Cancer Immunotherapy

Melanoma is a particularly aggressive form of cancer primarily caused by over-exposure to sunlight.  Although melanoma can strike at any age, the malignancy disproportionately impacts persons of advanced age, as these individuals often have decades of repeated exposure to harmful levels of ultraviolet radiation.  Scientists at NIH among others have clarified the link between advanced melanoma and other malignancies and expression of SPANX-B.

Novel Chemoattractant-Based Toxins To Improve Vaccine Immune Responses for Cancer and Infectious Diseases

Cancer is one of the leading causes of death in United States and it is estimated that there will be more than half a million deaths caused by cancer in 2009.  A major drawback of the current chemotherapy-based therapeutics is the cytotoxic side-effects associated with them.  Thus there is a dire need to develop new therapeutic strategies with fewer side-effects.  Immunotherapy has taken a lead among the new therapeutic approaches.  Enhancing the innate immune response of an individual has been a key approach for the treatment against different diseases such as cancer an

Therapeutics for Neurodegenerative Disorders and Cancer Using Lenalidomide Analogs

Inflammatory processes associated with the over-production of tumor necrosis-alpha (TNF-alpha), a potent activator of the immune system accompany numerous neurodegenerative diseases. TNF-alpha has been validated as a drug target with the development of the inhibitors Enbrel and Remicade (fusion antibodies) as prescription medications. Both, however, are large macromolecules that require direct injection and have limited brain access.

Novel Human Insulin Cα-Peptide as an Antagonist for Islet and Brain Amyloidosis

Over 32 million Americans are living with Diabetes and newly diagnosed cases of type 1 and type 2 diabetes is increasing. A defining feature of type 2 diabetes mellitus (T2DM) is the accumulation of islet amyloid polypeptide (IAPP) fibrils in pancreatic islets. Such accumulations form amyloid plaques, referred to as islet amyloidosis. Mounting evidence suggests that islet amyloidosis plays a causative role in the development and progression of ß-cell dysfunction in T2DM.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Nanoparticles such as lipid-based nanoparticles (LNPs) represent a relatively new era of targeted drug delivery systems wherein these biocompatible particles can carry the drug(s) of interest to a specific tumor site. The new generation of nanoparticles, known as stealth nanoparticles, are engineered to have a coating of polyethylene glycol polymer (PEG) or other glycolipids that enable them to evade the immune system and have a longer circulation lifespan as well as improved bioavailability to diseased tissue and reduced non-specific toxicity.
 

Real-time PCR Detection of <em>Streptococcus pneumoniae</em> with High Sensitivity and Specificity

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and is also a frequent cause of bloodstream, brain and spinal cord, ear, and sinus infections. According to 2015 CDC data, an estimated 900,000 Americans get pneumococcal pneumonia each year and approximately 5-7% die from it annually. Accurate diagnosis and early treatment are important for improving patient outcomes.

Identification Of The Gene Causing Familial Mediterranean Fever

The invention identifies the gene (MEFV) encoding the protein (pyrin) that is associated with familial Mediterranean fever (FMF). FMF, a recessive inherited disorder, is characterized by episodes of fever, inflammation, and unexplained arthritis, pleurisy, or abdominal pain. Pyrin is thought to a play a role in keeping inflammation under control, whereas mutated forms lead to a malfunctioning protein and uncontrolled inflammation. Mutated forms of MEFV were isolated and correlated to FMF disease.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.