The Use of Rabbits with Defined Immunoglobulin Light Chain Genes (C<sub>kappa</sub> b allotypes) to Optimize Production of Chimeric and Humanized Monoclonal Antibodies for Therapeutic, Imaging and Diagnostic Applications

Biological materials are important research tools that can be used for diagnostic as well as therapeutic purposes. Antibodies have become viable drugs in the market today and there is a general market need for systems that may facilitate production of efficient and effective antibodies. In recent years, monoclonal antibodies have gained significant importance in their use, both as diagnostics and therapeutics, to intervene and combat diseases such as cancer, cardiovascular diseases, and infections.

Genome Wide DNase I Hypersensitive Sites Detection in Formalin-Fixed Paraffin-Embedded Single Cells

A method of detecting DNase I hypersensitive sites ((DHS) in a single cell or very small number of cells, including cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides of patient samples. DHS has revealed a large number of potential regulatory elements for transcriptional regulation in various cell types. The application of DNase-Seq techniques to patient samples can elucidate pathophysiological mechanisms of gene function in a variety of diseases as well as provide potentially important diagnostic and prognostic information.

SIRT2 Inhibitors as Novel Therapeutics for Myocardial Infarction and Ischemic Stroke and to Prevent Necrosis

Sirtuin 2 (SIRT2) inhibitors to reduce necrosis and, thereby, as novel therapeutics to treat ischemic stroke and myocardial infarction. Accumulating evidence indicates that programmed necrosis plays a critical role in cell death during ischemia-reperfusion. NIH investigators have shown that the NAD-dependent deacetylase SIRT2 binds constitutively to receptor-interacting protein 3 (RIP3) and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice.

Vitamin D Receptor Antagonists for Treating Breast Cancer

Vitamin D receptor (VDR) is a nuclear receptor that is activated by calcitriol, the active form of vitamin D. It is best known for regulating dietary calcium uptake necessary for bone growth, but it also affects cell proliferation and differentiation. Therefore, it was thought that treatment with calcitriol or its derivatives could be useful to treat the uncontrolled proliferation typical of cancer cells. However, this approach has been unsuccessful to date because it leads to toxic levels of calcium in the blood.

A Mouse Model for Systemic Inflammation in Glucocerebrosidase-Deficient Mice with Minimal Glucosylceramide Storage

Gaucher disease, the most common lysosomal storage disease, is an inherited metabolic disorder in which harmful quantities of the lipid glucocerebroside accumulate in the spleen, liver, lungs, bone marrow and in rare cases in the brain, due to a deficiency of the enzyme glucocerebrosidase (Gba) that catalyses the first step in the biodegradation of glucocerebrosides. Type 1 Gaucher disease is the most common and is distinguished from the other forms of the disease, types 2 and 3, by the lack of neurologic involvement.

Rapid and Sensitive Detection of Nucleic Acid Sequence Variations

The ability to easily detect small mutations in nucleic acids, such as single base substitutions, can provide a powerful tool for use in cancer detection, perinatal screens for inherited diseases, and analysis of genetic polymorphisms such as genetic mapping or for identification purposes. Current approaches make use of the mismatch that occurs between complimentary strands of DNA when there is a genetic mutation, the electrophoretic mobility differences caused by small sequence changes, and chemicals or enzymes that can cleave heteroduplex sites.