Use Of p21-Activated Kinases (PAK) Inhibitors for the Treatment of CNS Disorders and Cancer

This technology includes the compounds, compositions, and methods for treating CNS disorders and cancer with an inhibitor of a p21-activated kinase (PAK). PAK activation is shown to play a key role in spine morphogenesis, and attenuation of PAK can reduce, prevent or reverse defects in spine morphogenesis leading to improvements in synaptic function, cognition, and/or behavior. This could be used to treat a wide variety of CNS disorders such as schizophrenia, Alzheimer’s, Parkinson’s Disease, depression, bipolar, and many others.

Remodelins, a New Class of Compounds to Prevent Airway Remodeling and to Treat and Prevent Fibrosis in Multiple Organs

This technology includes a new class of compounds, called remodelins, which can be used to prevent airway remodeling and prevent lung fibrosis. Currently no effective therapies are available for lung fibrosis. This compound could also be employed as a treatment for asthma.

Remodelins, a New Class of Compounds to Prevent or Treat Cancer Metastasis or Glaucoma

This technology includes a series of small molecule organic compounds, called remodelins, that are synthetic derivative analogs of a parent compound discovered by screening of a Chembridge library. The novel synthetic derivative analogs were generated through multiple iterations of compounds directed by in vitro experiments. The invention also includes use of these or related molecules to treat cancer and/or glaucoma.

Murine Monoclonal Antibodies Effective To Treat Respiratory Syncytial Virus

Available for licensing through a Biological Materials License Agreement are the murine MAbs described in Beeler et al, "Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function," J Virol. 1989 Jul;63(7):2941-2950 (PubMed abs). The MAbs that are available for licensing are the following: 1129, 1153, 1142, 1200, 1214, 1237, 1112, 1269, and 1243. One of these MAbs, 1129, is the basis for a humanized murine MAb (see U.S.

Methotrexate Analogs with Enhanced Efficacy and Safety Profile

Scientists at NCATS have developed an analog of Methotrexate (MTX) that incorporates the proteasome-targeting properties of E3-ubiquitin ligase small molecule ligands (MTX-PROTACs) to directly bind to the MTX target dihydrofolate reductase (DHFR) and mark the protein for proteasomal degradation. This unique property may dramatically lower the therapeutic dose required in a treatment setting.

Substituted Quinoline Analogs as Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors

Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Unbalanced expression levels of ALDHs have been associated with a variety of disease states such as alcoholic liver disease, Parkinson’s disease, obesity, and multiple types of cancers. ALDH1A1 also plays a major role in preserving the tumor microenvironment via differentiation, self-protection, and proliferation of cancer stem cells.

Compounds and Methods for Blocking Transmission of Malarial Parasites

Malaria continues to be a life-threatening disease, causing roughly 241 million cases and an estimated 627,000 deaths in 2020, mostly among African children, although in 2020 nearly half of the world’s population was at risk of malaria. There is a big financial burden for antimalarial treatment; direct costs (for example, illness, treatment, premature death) have been estimated to be at least US $12 billion per year and the cost in lost economic growth is many times more than that.