HLA-A*01:01 Restricted Human T Cell Receptor Recognizing the NRAS Q61K Hotspot Mutation

Mutation of amino acid 61of the neuroblastoma rat sarcoma viral oncogene homologue (NRAS) is a known driver of oncogenesis in melanoma. Glutamine (Q) to lysine (K) mutation at this position of NRAS is prevalent in approximately 10% of all melanoma cases and associated with aggressive tumors and low patient survival. Therefore, Q61K mutated NRAS is an important candidate for targeted therapies, including cellular immunotherapy. 

Coumarin Luciferins and Mutant Luciferases for Bioluminescence Imaging

Bioluminescence imaging with luciferin-luciferase pairs is a well-established technique for tracking cells and other biological features in animal models. Bioluminescent is a chemical process which does not require an external input for excitation. Bioluminescent imaging is often limited to monitoring single processes in vivo due to the lack of distinguishable probes. Additionally, existing probes typically operate with light in the visible range, which is highly scattered and exhibits poor tissue penetration. 

Novel Human Insulin Cα-Peptide as an Antagonist for Islet and Brain Amyloidosis

Over 32 million Americans are living with Diabetes and newly diagnosed cases of type 1 and type 2 diabetes is increasing. A defining feature of type 2 diabetes mellitus (T2DM) is the accumulation of islet amyloid polypeptide (IAPP) fibrils in pancreatic islets. Such accumulations form amyloid plaques, referred to as islet amyloidosis. Mounting evidence suggests that islet amyloidosis plays a causative role in the development and progression of ß-cell dysfunction in T2DM.

Tempol as a Therapeutic to Treat Covid-19 Via Inhibition of Viral Replication

Despite several partially effective prophylactic vaccines for SARS-CoV-2 exist, patients worldwide still succumb to COVID-19. New therapeutics to treat this disease are still needed.  Upon host invasion, a critical step in the pathogenesis of COVID-19 is intracellular replication of SARS-CoV-2 before viral particles invade nearby healthy cells. This triggers an extreme inflammatory response that may lead to acute respiratory distress syndrome (ARDS) or transmission to another host.

Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy

Immune checkpoint inhibitors (ICIs) vastly improved the outcome of various advanced cancers; however, many are less likely to respond to single-agent ICI. Tumors with low T-cell infiltration are "immunologically cold" and less likely to respond to single-agent ICI therapy. This diminished response is presumably due to the lack of neoantigens necessary to activate an adaptive immune response. On the other hand, an "immunologically hot" tumor with high T-cell infiltration has an active anti-tumor immune response following ICI treatment.

Anti-Viral Polypeptide Griffithsin: Compounds, Compositions, and Methods of Use

This technology describes additional methods of using the griffithsin anti-viral polypeptides described in related NCI invention (reference number E-106-2003).  Specifically, this invention describes the use of GRFT to inhibit viral infection of hepatitis C viral infection, a severe acute respiratory syndrome (SARS) viral infection, an H5N1 viral infection, or an Ebola viral infection. 

An Anti-Viral Polypeptide: Griffithsin

Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses.

Human and Improved Murine Monoclonal Antibodies Against CD22

CD22 is a common cell surface glycoprotein expressed in B-cells and present in B-cell lymphomas; e.g., hairy cell leukemia (HCL), non-Hodgkins lymphoma (NHL), chronic lymphoblastic leukemia (CLL), and other cancers. It is therefore a target for cancer immunotherapy. Conjugation of anti-CD22 monoclonal antibodies with toxins or drugs has shown promise in clinical trials. However, all monoclonal anti-CD22 antibodies used in clinical trials are of murine origin.

Chimeric Antigen Receptors to CD22 for Treating Hematological Cancers

Chimeric antigen receptors (CARs) are hybrid proteins consisting of an antibody binding fragment fused to protein signaling domains that cause T-cells which express the CAR to become cytotoxic.  Once activated, these cytotoxic T-cells can selectively eliminate the cells which they recognize via the antibody binding fragment of the CAR.  Thus, by engineering a T-cell to express a CAR that is specific for a certain cell surface protein, it is possible to selectively target those cells for destruction.  This promising new therapeutic approach is known as adoptive cell therapy.

T-cell Phenotypes Associated with Clinical Response to Adoptive Immunotherapy

Adoptive T-cell therapy (ACT) utilizes tumor-reactive T cells to induce disease remission. While ACT has been used effectively to treat metastatic melanoma and certain epithelial cancers, most patients do not respond to treatment. Although the mechanisms underlying this variable response to therapy are not fully elucidated, the phenotype of the adoptively transferred cell is known to be a key determinant of treatment efficacy.