T Cell Receptor Targeting CD22 for the Treatment of Lymphomas and Leukemias

CD22 is a protein expressed by normal B cells and B-lymphoid malignancies. Its limited tissue expression pattern makes it a safe antigen for targeted therapies, such as T-cell Receptor (TCR)-T cell therapy. CD22-targeting therapies already on the market, mainly antibody-immunotoxin conjugates and chimeric antigen receptors (CAR)-T cells, have limitations such as resistance to treatment and/or side effects. Resistance mechanisms to the current CD22 therapies involve loss or modulation of target antigen on the cell surface.

A Human Monoclonal Antibody Against Deacetylated PNAG for Use as an Antimicrobial Agent

Biofilms are complex microbial communities, surface attached and held together by self-produced polymer matrices.  These matrices are mainly composed of polysaccharides, secreted proteins and nucleic acids.  Poly-N-acetyl glucosamine (PNAG) is a highly conserved surface polysaccharide expressed by a range of bacterial, fungal and protozoan microorganisms.

FIBP Knockout Potentiates Therapeutic Effects of T-cell Based Therapies in Solid Tumors

Despite recent breakthroughs in cancer immunotherapy, T-cell based therapies achieve limited efficacy in solid tumors. Immunosuppression, antigen escape and physical barriers to entry into solid tumors are issues faced. Identifying regulators in T-cell dysfunction remains challenging due to limitations of current screening platforms. 

Immunotherapy Combination Treatment Containing both TLR4 and TLR2/6 Agonists, a Checkpoint Inhibitor, and a STING agonist.

Melanoma is an aggressive form of skin cancer that commonly becomes metastatic, spreading to nearby tissue or other parts of the body, including distant skin or subcutaneous sites such as the lungs, liver, brain, or bone. Metastatic melanoma is very drug resistant and difficult to treat, and therefore, the prognosis for these patients is poor. There is a need for effective therapies for aggressive melanoma and other drug-resistant solid cancers. 

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

Cyclin-dependent kinase inhibitor 2A gene, also known as CDKN2A, is a tumor suppressor gene and is commonly inactivated through somatic mutations in many human cancers. For example, inactivation of CDKN2A is highly prevalent in melanoma, gastrointestinal and pancreatic cancers. Through germline mutations, CDKN2A is associated with predisposition for a variety of cancers, including melanoma and pancreatic cancers. Despite the high frequency of CDKN2A mutations in cancer, there have been no successful therapies targeting these mutations to date.

Novel Small Molecule Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treatment of Solid Tumors

Topoisomerase 1 (TOP1) is an essential enzyme that plays a critical role in DNA transcription and replication. TOP1 inhibitors are a known class of anti-cancer agents that work to interrupt DNA replication in cancer cells, causing cell death. Since the discovery of the TOP1 inhibitor camptothecin (CPT) from plant extracts more than 60 years ago, two CPT analogs (irinotecan and topotecan) were approved by the FDA for cancer treatment. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme involved in DNA repair created when TOP1 is inhibited.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

BRAF is an oncogene that encodinges a serine-threonine kinase (B-Raf kinase) important in regulating cell growth and differentiation. Spontaneous mutations in the BRAF gene allow cells to continuously divide, leading to the development of cancer. A substitution of glutamic acid for valine at amino acid number 600 (designated V600E) accounts for 90% of BRAF mutations and is a driver of many cancers. The V600E mutation is present in ~3% of all cancer cases, representing a patient population of 540,000 patients per year.

Neoantigen T Cell Therapy with Neoantigen Vaccination as a Combination Immunotherapy Against Cancer

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes autologous, antitumor T cells to attack tumors through recognition of tumor-specific mutations, or neoantigens. A major hurdle in the development of ACT is the exhausted phenotype exhibited by many neoantigen-specific T cells, which limits their efficacy and prevents a sustained immune response. 

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed.