Sphingosine Kinase 1 (Sphk1) Knockout Mouse for Utilization in Developmental Biology

This technology includes a sphingosine kinase 1 (Sphk1) knockout mouse model for use in developmental biology research. Sphingosine-1-phosphate (S1P) is synthesized from sphingosine and ATP by the action of sphingosine kinase, and activates cell signaling. Two sphingosine kinases, SPHK1 and SPHK2, have been identified. To study the physiological function of SPHK1, Sphki null mice were generated. The mice were viable, fertile, with no obvious abnormalities. Total SPHK activity in most tissues was substantially reduced, suggesting the presence of other sphingosine kinases.

A Novel Oxygen-induced Expression Vector for Production of Recombinant Proteins in Escherichia Coli

This technology includes a new method to induce recombinant protein expression in E. coli through the activating the SoxS promoter by molecular oxygen. We previously discovered that the SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration mainly to protect the bacteria from possible oxygen damage. We hypothesized that the 16-fold increase in the expression of this regulon make it possible candidate for inducing the expression of recombinant proteins.

Mouse Models for the Study of Gaucher Disease and Therapeutic Development

This technology includes mouse models for both mild and severe Gaucher disease. Gba-L444P and Gba-L444P A456P mice, respectively, carry common gene mutations for milder or severe Gaucher disease, a lysosomal storage disease. Gaucher Disease is caused by mutations in the lysosomal enzyme, glucocerebrosidase. Deficiency of enzyme activity leads to the accumulation of glucosylceramide in liver, spleen, bone, and in the most severe cases, the central nervous system.

Thyclotides for the Development of Clinical Diagnostics and Targeted Therapeutics

This technology includes a new class of oligomeric molecules called thyclotides for diagnostic and therapeutic development. Thyclotides is described where chiral tetrahydrofuran (THF) diamine units are linked together with alternating glycines, and nucleobases are attached to this backbone as sidechains. The thyclotide sequence consists of a series of nucleobases similar to that of a nucleic acid sequence. Thyclotides are easily synthesized and purified with excellent solubility in water. Thyclotide sequences bind to complementary DNA and RNA sequences with very strong affinity.

S1pr1 LoxP (S1p1 FM2Rip) Mouse Model for Developmental Biology

This technology includes a mouse model for S1 pr1 to be used in development biology research. Sphingosine-1-phosphate is a potent bioactive compound that activates a family of G-protein coupled receptors known as Edg or S1P receptors. Triggering these receptors on cells may have important effects related to inflammation, immunity, cancer, angio-genesis, cell proliferation, adhesion, cardiovascular function, nervous system function and injury responses.

Methods For Pharmacologic Treatment of Stroke

This technology includes P2X4R adenosine receptor antagonists, including NP-1815-PX and 5-BDBD, for treating stroke. Stroke is the fifth leading cause of death for Americans and a leading cause of serious long-term disability. Current approaches to treating ischemic stroke are primarily limited to the administration of thrombolytic therapeutics such as tissue plasminogen activator, or to an invasive endovascular procedure involving the use of a clot removing/retrieving device.

Shingosine Kinase 2 (Sphk2) Knock Out Mouse for Neurobiology and Immunology Research

This technology includes a knockout mouse model for Sphingosine kinase 2 (Sphk2) to be used in neurobiology and immunology research studies. Sphingosine kinase 1 and 2 are enzymes that produce sphingosine-1-phosphate, a potent bioactive compound that activates a family of G-protein coupled receptors known as Edg or S1P receptors. Triggering these receptors on cells may have important effects related to inflammation, immunity, cancer, angiogenesis, cell proliferation, adhesion, cardiovascular function, nervous system function and injury responses.

MLL3 (KMT2C), MLL4, PA1, UTX And PTIP Antibodies for the Treatment of Development Diseases and Cancers

This technology includes polyclonal antibodies against MLL3 (KMT2C), MLL4, PA1, UTX And PTIP for the development of treatments for development diseases and cancer. Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear.

PPTN as a Selective P2Y14 Receptor Antagonist for the Discovery of Treatments of Inflammatory Disorders

This technology includes PPTN which can be used to study treatments of inflammatory diseases. PPTN is currently a useful pharmacological probe that many labs in the field of purinergic signaling are interested in obtaining. The availability of PPTN as a research tool will stimulate basic advances in the field and possibly eventually lead to new treatments. However, PPTN itself is unsuitable for therapeutic applications. Separately, we are working on new and improved antagonists of the P2Y14 receptor.

Mouse Models for the Study of Male Fertility

This technology includes two mouse models to be used in studying male sterility. One mouse is deficient in the full-length protein for STAMP/TtH5. The second is a conditional mutant STAMP mouse that can be used to produce tissues/organs that are deficient in full length STAMP. STAMP represents an intriguing new protein in the study of male fertility. More detailed future studies should identify the precise defect(s) leading to male sterility and may identify other behavioral and developmental consequences, such as a role in the immune system that is suggested by the microarray studies.