Salt and Crystal Forms of 2R,6R-Hydroxynorketamine for the Treatment of Depression

This technology includes two new salt forms for (2R,6R)-hydroxynorketamine (2R,6R-HNK), which is the lead molecule being developed for treatment-resistant depression. Currently, 2R,6R-HNK is being developed as the HCl salt. The HCl salt is slightly hygroscopic at high RH. This is a potential liability, especially in an oral pill form. Recently the malonate and salicylate salt have been discovered and found to have excellent crystalline behavior while also not having the hygroscopic liability the HCl salt holds. This represents a clear advantage.

Amido compounds as RORgt Modulators for the Treatment of Th17-related Autoimmune Diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Potent and selective RORgt inhibitors can be used to developed novel treatments for Th17-related autoimmune diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Small Molecule Inhibitors Against Human apurinic/apyrimidinic endonuclease 1 (APEl) for the Treatment of Cancer

This technology includes a novel APEl small molecule inhibitor, which exhibits potent in vitro activity and potentiates the cytotoxicity of DNA damaging agents. APEl is the primary mammalian enzyme responsible for the removal of abasic (AP sites) in DNA and functions as part of the base excision DNA repair pathway (BER). BER is instrumental in the repair of DNA damage caused by DNA alkylating agents (e.g., many cancer chemotherapeutics). Thus, inhibition of this pathway should potentiate the cytotoxicity of such compounds.

Use Of p21-Activated Kinases (PAK) Inhibitors for the Treatment of CNS Disorders and Cancer

This technology includes the compounds, compositions, and methods for treating CNS disorders and cancer with an inhibitor of a p21-activated kinase (PAK). PAK activation is shown to play a key role in spine morphogenesis, and attenuation of PAK can reduce, prevent or reverse defects in spine morphogenesis leading to improvements in synaptic function, cognition, and/or behavior. This could be used to treat a wide variety of CNS disorders such as schizophrenia, Alzheimer’s, Parkinson’s Disease, depression, bipolar, and many others.

Systemic CRISPR Therapy for the Treatment of Inherited Diseases

This technology includes novel systemic adeno-associated virus (AAV)-mediated CRISPR gene therapy technology. While some diseases (e.g., retinal diseases) can be treated through local gene transfer, many diseases such as Duchenne Muscular Dystrophy (DMD) require systemic therapy. The CRISPR technology has two components, the Cas9 endonuclease, and the gRNA. To explore systemic CRISPR therapy, we co-delivered the AAV.Cas9 and AAV.gRNA vector to mdx mice, a mouse DMD model. Direct delivery to muscle yielded efficient gene correction.

Real-time Cellular Thermal Shift Assay and Analysis (RT-CETSA) for Research and Drug Discovery

Scientists at NCATS have developed a novel Cellular Thermal Shift Assay (CETSA), named “Real-time CETSA” in which temperature-induced aggregation of proteins can be monitored in cells in real time across a range of compound concentrations and simultaneously across a temperature gradient in a high-throughput manner. Real-time CETSA streamlines the thermal shift assay and allows investigators to capture full aggregation profiles for every sample.

Cell-based High-throughput High-content Assays Using Glycolytic Enzymes for Drug Discovery

This technology includes an assay capable of monitoring glycosome formation for use in high throughput screening (HTS). The reversible assembly and disassembly of a multi-enzyme complex, known as the glycosome, visualized by GFP-labeled human phosphofructokinase-1 (PFK1), is employed as an intracellular marker in human cells to screen small molecule libraries under high-content imaging in a high-throughput fashion. The glycolytic enzymes have been proposed to form a multi-enzyme complex in the cell.

Biofabrication of Skin Tissues with Dermis and Epidermis in Multiwell Plate Format to be Utilized for Chemical and Biologic Testing as well as Transplantation and Regenerative Medicine

This technology includes methods for the biofabrication of full thickness skin tissues in 12, 24, 48 and 96-well plates, using commercially available hardware to enable the implementation of large-scale toxicity and efficacy testing of chemical and biologics.

Identification and Use of Heterocyclic Alcohol Compounds for the Treatment of SULT1A1-expressing Cancers

This technology includes the identification and use of heterocyclic alcohol compounds, including RITA and N-BIC, for the treatment of SULT1A1-expression cancers. A high-throughput screen (qHTS) was performed using >1,000 caner cell lines identified a compound called YC-1 (also called Lificiguat) that is effective across cancer cell types that express the phase 2 detoxifying enzyme SULT1A1.