A Mouse Model for Human Osteoarthritis

Osteoarthritis (OA) is the most common form of arthritis and affects more than 20 million Americans, costing billions of dollars in health care annually. Osteoarthritis is caused by the breakdown of joint cartilage, leading to a loss of the cartilage "cushion" between the bones of the joints. Risk factors associated with OA include age, obesity, traumatic injury and overuse due to sports or occupational stresses. There is no cure for OA and current treatments are directed at the symptomatic relief of pain, and at improving and maintaining joint function.

Vitamin C renal leak as a clinical diagnostic tool in the detection, monitoring, and management of acute and chronic diseases

This technology includes a clinical diagnostic tool for measuring vitamin C elimination by human kidneys that can be used for detecting, monitoring, and managing acute and chronic diseases. Findings revealed significant associations between vitamin C renal leak status and clinical variables affecting renal function and blood glucose. The technology uses vitamin C depletion-repletion kinetics and pharmacokinetic models to establish a physiological vitamin C renal threshold.

Antibodies Against TL1A, a TNF-Family Cytokine, for the Treatment and Diagnosis of Autoimmune Inflammatory Diseases

Autoimmune inflammatory diseases occur in greater than five percent of the United States population; this disease group includes asthma, multiple sclerosis, rheumatoid arthritis, and lupus. Treatments generally include immunosuppressants or anti-inflammatory drugs, which can have serious side effects; recently, more specific immunomodulatory therapies such as TNF-alpha antagonists have been developed.

Engineering Neural Stem Cells Using Homologous Recombination

Methods for modifying the genome of a Neural Stem Cell (NSC) are disclosed. Also, methods for differentiating NSCs into neurons and glia are described. NSCs are multipotent, self-renewing cells found in the central nervous system, capable of differentiating into neurons and glia. NSCs can be generated efficiently from pluripotent stem cells (PSCs) and have the capacity to differentiate into any neuronal or glial cell type of the central nervous system.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Antigen Mixtures for Serological Detection of HHV-8 Infection

This invention describes a highly specific and sensitive serological test for human herpesvirus 8 (HHV-8) infection that uses the Luciferase Immunoprecipitation System (LIPS). A mixture of four virus-specific antigens, including K8.1, v-cyclin, ORF65 and LANA, was shown to provide more robust detection of HHV-8 infection than traditional methods due its ability to detect very low viral loads.