A Preclinical Model for Mutant Human EGFR-driven Lung Adenocarcinoma

Previously described epidermal growth factor receptor- (EGFR) driven tumor mouse models develop diffuse tumors, which are dissimilar to human lung tumor morphology and difficult to measure by CT and MRI scans. Scientists at the National Cancer Institute (NCI) have developed and characterized a genetically engineered mouse (GEM) model of human EGFR-driven tumor model (hEGFR-TL) that recapitulates the discrete lung tumor nodules similar to those found in human lung tumor morphology.

Parental A2780 Ovarian Cancer Cell Line and Derivative Cisplatin-resistant and Adriamycin-resistant A2780 Cell Lines

Ovarian cancer is one of the most common and lethal types of gynecological malignancies worldwide, accounting for approximately 295,000 new cases and 185,000 deaths annually. The high lethality rate is due to multiple reasons, including recurrence and the resistance of recurrent tumors to chemotherapy. Cell line models are crucial for preclinical cancer studies, to identify mechanisms of disease, to study drug resistance, and to screen for candidate therapeutics. 

A Most Efficient and Convergent Principal Component Analysis (PCA) Method for Big Data

Big data usually means big sample size with many outliers, in which traditional scalable L2-norm principal component analysis (L2-PCA) will fail. Current existing L1-norm PCA (L1-PCA) methods can improve robustness over outliers, however, its scalability is usually limited in either sample size or dimension size.  The inventor proposes an online flipping method to solve L1-PCA challenges, which is not only convergent asymptotically (or with big data), but also achieves most efficiency in the sense each sample is visited only once to extract one principal component (PC).

Bioluminescent Bladder Cancer Cell Line for Tracking Cancer Progression

Bladder cancer is the fifth most common cancer in the United States and one of the costliest cancers to treat. Compared to other cancer types, bladder cancer has been understudied, and there is a need for informative mouse bladder cancer models that resemble the clinical situation and allow for evaluation of chemotherapeutic or immunotherapeutic agents. The orthotopic murine bladder cancer model MB49 resembles non-muscle invasive, nonmetastatic urothelial carcinomas and provides an opportunity to study the anti-tumor effects of immune cell checkpoint inhibitors.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The baculovirus-based protein expression system has gained increased prominence as a method for expressing recombinant proteins that are used in a wide range of biomedical applications. An important step in the use of this system is the ability to determine the virus infectious titer, i.e., the number of active baculovirus particles produced during an infection of the insect host cell.

Tni-FNL: An Improved Trichoplusia Ni Cell Line for Protein Expression

Researchers at the National Cancer Institute (NCI) have developed an improved insect cell line, Tni-FNL, derived from the cabbage looper, Trichoplusia ni.  The Tni-FNL cell line is capable of high level expression of heterologous proteins using baculovirus-based expression systems.  When compared to commercially available cell lines used for the same purpose, the Tni-FNL cell line often outperforms those for protein expression.  These cells have a high growth rate and are capable of growth at a lower temperature.

A Novel Carbohydrate Antibody to GalNac1-3Gal and Its Application for Cancer Diagnostic and Prognosis

Cervical cancer is one of the most common cancers among women worldwide. Currently, physical descriptors such as tumor size and depth are the primary factors used for deciding the course of treatment. Despite significant efforts to identify prognostic biochemical markers or therapeutic targets to improve diagnosis and treatment, none have achieved routine clinical use. An example of one previously identified biomarker is the Tn antigen, a carbohydrate moiety composed of a GalNAc residue linked to serine or threonine.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy (ACT) uses cancer reactive T-cells to effectively treat patients. However, several obstacles inhibit the successful use of ACT for cancer treatment.  Current approaches for the expansion of T-cells may produce T-cells with a terminally differentiated phenotype that is associated with diminished anti-tumor activity and poor capacity for long-term persistence. Thus, there is a need for improved methods of obtaining an isolated population of effective T-cells for ACT.