Engineering Neural Stem Cells Using Homologous Recombination

Methods for modifying the genome of a Neural Stem Cell (NSC) are disclosed. Also, methods for differentiating NSCs into neurons and glia are described. NSCs are multipotent, self-renewing cells found in the central nervous system, capable of differentiating into neurons and glia. NSCs can be generated efficiently from pluripotent stem cells (PSCs) and have the capacity to differentiate into any neuronal or glial cell type of the central nervous system.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Antigen Mixtures for Serological Detection of HHV-8 Infection

This invention describes a highly specific and sensitive serological test for human herpesvirus 8 (HHV-8) infection that uses the Luciferase Immunoprecipitation System (LIPS). A mixture of four virus-specific antigens, including K8.1, v-cyclin, ORF65 and LANA, was shown to provide more robust detection of HHV-8 infection than traditional methods due its ability to detect very low viral loads.

Development of Immune System Tolerance for the Treatment of Autoimmune Disease

The present invention provides a therapeutic method for the treatment of autoimmune or autoinflammatory diseases by first breaking down the dysregulated immune system and then reprogramming the immune system to restore tolerance to the patient's self-antigens by induction of antigen specific regulatory T cells. The inventors have shown that only with the combination of apoptosis, phagocytes, and antigen can antigen-specific regulatory T cells (Treg) cells be optimally generated to develop long-term immune tolerance.

Methods of Treating or Preventing Pruritis (Itch)

This technology provides a novel method of treating or preventing pruritis (itch) using natriuretic polypeptide b (Nppb) blocking agents. Itch (also known as pruritis) is a sensation that may be perceived as an unpleasant skin irritation and may drive an urge to scratch. Conditions such as, for example, psoriasis, atopic dermatitis, renal failure, liver cirrhosis and some cancers may cause persistent itch. Itch is triggered by somatosensory neurons expressing the ion channel TRPV1 (transient receptor potential cation channel subfamily V member 1).

mNFHcre Transgenic Mice

Knockout mouse is a valuable model to study biological functions of target genes. When Cre expressing mice are bred with mice containing a loxP-flanked gene, the gene between the loxP sites will be deleted in the offsprings. Scientists at the NIH have generated mNF-H-cre transgenic mouse lines that express Cre recombinase under the control of the promoter of the neurofilament-H gene, which is expressed in the late stage of neuronal maturation. The transgenic mice express cre in neurons (but not astrocytes) with highest expression in the cortex and hippocampus.

KCNN4 Knockout Mice for Mechanistic Research

This technology includes a transgenic allele for a mouse knockout model for the KCNN4 gene. Secretion of fluids from these salivary glands requires the coordination of multiple water and ion channel proteins. Notably, the majority of these channels have been shown to be up-regulated by increased calcium concentrations. The relevant calcium-activated potassium channels are split into the small, intermediate, and large conductance channels (called the SK, IK, and BK channels). The KCNN4 gene plays a part in the IK and BK channels.