Functions and Targets of Therapeutic MicroRNAs to Treat and Diagnose Cancer

This technology includes a method to identify potentially therapeutic microRNAs in cancer, particularly squamous cell carcinoma of the head and neck (HNSCC). This approach first utilizes a large and publicly available expression dataset, which is then validated by a smaller independent dataset to determine deregulated microRNAs expression. These results are then intersected with in vitro functional anti-proliferative screening data to select for microRNAs that play a functional tumor suppressive role and likely serve as therapeutic targets.

A New Molecular Scaffold for Targeting hRpn13 as a Treatment for Cancer

This technology includes a new chemical scaffold (with lead compound XL5) against hRpn13 that induces apoptosis, which may have clinical efficacy against cancer. The structure of XL5-conjugated hRpn13 guided the design of XL5-PROTAC degrader compounds that exhibit greater efficacy than previous hRpn13-targeting compounds, as evaluated by selectivity for hRpn13, induction of apoptosis, and loss of cell viability. In cells, XL5-PROTACs revealed the presence of a truncated hRpn13 product that binds to proteasomes and is selectively degraded by XL5-PROTACs.

Systemic CRISPR Therapy for the Treatment of Inherited Diseases

This technology includes novel systemic adeno-associated virus (AAV)-mediated CRISPR gene therapy technology. While some diseases (e.g., retinal diseases) can be treated through local gene transfer, many diseases such as Duchenne Muscular Dystrophy (DMD) require systemic therapy. The CRISPR technology has two components, the Cas9 endonuclease, and the gRNA. To explore systemic CRISPR therapy, we co-delivered the AAV.Cas9 and AAV.gRNA vector to mdx mice, a mouse DMD model. Direct delivery to muscle yielded efficient gene correction.