Select M. tuberculosis Peptides as Mucosal Vaccines Against Pulmonary Tuberculosis
Molecular Detection and Viral-Load Quantification for HIV-1 Groups M, N and O, and Simian Immunodeficiency Virus-cpz (SIVcpz)
Simple, Rapid, and Sensitive Real-Time PCR Assays for Detecting Drug Resistance of HIV
Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents
4G10, a Monoclonal Antibody Against the Chemokine Receptor CXCR4, Raised Against a Synthetic Peptide of 38 Residues in Length Derived from the N-terminal Sequence of CXCR4
Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation
HLA-class II-restricted T Cell Receptors for PIK3CA “Hotspot” Mutations, E545K and N345K
Summary:
The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a collection of T cell receptors (TCRs) that specifically target PIK3CA mutations to treat patients with tumors expressing these mutations in the context of HLA-DPA1*01:03:01, HLA-DPB1*04:01:01 or HLA-DRB1*04:01.
Description of Technology:
A New Molecular Scaffold for Targeting hRpn13 as a Treatment for Cancer
This technology includes a new chemical scaffold (with lead compound XL5) against hRpn13 that induces apoptosis, which may have clinical efficacy against cancer. The structure of XL5-conjugated hRpn13 guided the design of XL5-PROTAC degrader compounds that exhibit greater efficacy than previous hRpn13-targeting compounds, as evaluated by selectivity for hRpn13, induction of apoptosis, and loss of cell viability. In cells, XL5-PROTACs revealed the presence of a truncated hRpn13 product that binds to proteasomes and is selectively degraded by XL5-PROTACs.
Next-Generation 5-HT-2B Serotonin-Receptor Antagonists for Anti-Fibrotic & Cardiopulmonary Therapy
This technology includes a family of small-molecule antagonists that selectively block the 5-HT2B serotonin receptor—an upstream driver of tissue-remodeling—to address fibrotic, cardiopulmonary and related disorders. Built on a conformationally-locked “(N)-methanocarba” nucleoside scaffold, the compounds show nanomolar potency, >30–400-fold selectivity over the closely related 5-HT2C receptor, and favorable oral bioavailability in rodents.