A Novel Adeno-Associated Virus for Gene Therapy

Scientists at the NIH disclosed a novel adeno-associated virus (AAV) termed "44-9." AAV44-9 based vectors have high gene transfer activity in a number of cell types, including salivary gland cells, liver cells, and different types of neurons (e.g., cells of the cortex, olfactory bulb, and brain stem, and Purkinje cells of the cerebellum). These vectors can increase the transduction efficiency and decrease the potential of being neutralized by preexisting antibodies compared to the wild type AAV.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).

Diagnostic Biomarker of Metastasis for Improved Clinical Management of Head and Neck Cancer

Squamous Cell Carcinoma of the Head and Neck (HNSCC) is associated with poor prognosis due to the advanced stage of disease (metastasis) typically found at the time of diagnosis. Investigators at the NIH have developed a sensitive method using a protein biomarker for detecting even just a few HNSCC tumor cells in lymph nodes with occult disease.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

Methods of Treating or Preventing Pruritis (Itch)

This technology provides a novel method of treating or preventing pruritis (itch) using natriuretic polypeptide b (Nppb) blocking agents. Itch (also known as pruritis) is a sensation that may be perceived as an unpleasant skin irritation and may drive an urge to scratch. Conditions such as, for example, psoriasis, atopic dermatitis, renal failure, liver cirrhosis and some cancers may cause persistent itch. Itch is triggered by somatosensory neurons expressing the ion channel TRPV1 (transient receptor potential cation channel subfamily V member 1).

Potential New Drugs for Treating or Preventing Pruritus

NIH scientists have identified new compositions that could potentially be used to treat or prevent pruritus (itchiness). The newly discovered compounds can block a newly identified itch pathway and might be effective for persistent itch caused by psoriasis, atopic dermatitis, renal failure, liver cirrhosis and chemotherapy. These compounds are different from commonly used antihistamines which induce drowsiness and sedation. These compounds have the potential to be used for human and animals.

KCNN4 Knockout Mice for Mechanistic Research

This technology includes a transgenic allele for a mouse knockout model for the KCNN4 gene. Secretion of fluids from these salivary glands requires the coordination of multiple water and ion channel proteins. Notably, the majority of these channels have been shown to be up-regulated by increased calcium concentrations. The relevant calcium-activated potassium channels are split into the small, intermediate, and large conductance channels (called the SK, IK, and BK channels). The KCNN4 gene plays a part in the IK and BK channels.

Oxynitidine Derivatives as Tyrosyl DNA Phosphodiesterase (TDP) Inhibitors and Radiosensitizers

Summary: 
The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in further developing this family of oxynitidine derivatives as tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors and radiosensitizers for the treatment of cancer.