Her2 Monoclonal Antibodies, Antibody Drug Conjugates as Cancer Therapeutics

Antibody drug conjugates (ADC) can demonstrate high efficacy as cancer therapeutics, however, much more can be done to improve their efficacy and safety profile. Site-specific antibody drug conjugation is a promising way to do this. Scientists at the NCI’s Laboratory of Experimental Immunology have identified a fully human monoclonal antibody, m860, that binds to cell surface-associated Her2 with affinity comparable to that of Trastuzumab (Herceptin) but to a different epitope.

Nitric Oxide Based Therapeutics for the Treatment of Lung Cancer

Nitric oxide (NO) has a broad spectrum of actions in physiological and pathological processes.  NO-donor drugs have shown therapeutic effect in several cancer types by inducing apoptosis but the concentrations required have suggested limited clinical applicability.  For cancers such as non-small cell lung cancer where most therapies are not curative, there remains a need for effective treatments. 

Brain endothelial reporter cells

Aberrant function of the WNT-b-catenin pathway is a common underlying cause of tumorigenesis.  Despite the attractiveness of the WNT-b-catenin pathway as a therapeutic target, WNT dependent cell signaling is also crucial for normal tissue development, and is ubiquitous in all organs.  As a result, WNT-b-catenin pathway inhibitors cause many side effects and fail to meet FDA safety standards.  A more targeted approach is needed to develop safe and effective WNT signaling inhibitors.

Immunotherapy Combination Treatment Containing both TLR4 and TLR2/6 Agonists, a Checkpoint Inhibitor, and a STING agonist.

Melanoma is an aggressive form of skin cancer that commonly becomes metastatic, spreading to nearby tissue or other parts of the body, including distant skin or subcutaneous sites such as the lungs, liver, brain, or bone. Metastatic melanoma is very drug resistant and difficult to treat, and therefore, the prognosis for these patients is poor. There is a need for effective therapies for aggressive melanoma and other drug-resistant solid cancers. 

Antibodies and CARs Targeting FLT3 for the Treatment of Acute Myeloid Leukemia and Acute Lymphoid Leukemia

Fms-like tyrosine kinase 3 (FLT3) is a cytokine receptor which belongs in the receptor tyrosine kinase class III.  FLT3 is expressed on the surface of many hematopoietic progenitor cells and plays an important role in hematopoietic stem/progenitor cell survival and proliferation.  It is often overexpressed in acute lymphoblastic leukemia (ALL) and is frequently mutated in acute myeloid leukemia (AML).  The standard therapies for ALL and AML are still suboptimal for many patients, especially pediatric.  In certain types of ALL or AML, the survival rate is less than 40 and

Improved Production of Prenylated Protein in Insect Cells

KRAS and other Ras-family enzymes are an important component of over 30% of human cancers, however, no effective therapeutics targeting Ras or Ras-driven cancers are currently available.  The production of Ras proteins in vitro is required for the identification and characterization of Ras targeting drugs.  An important step in producing the Ras protein involves prenylation of the C-terminus of the protein via farnesyltransferase, a modification that does not occur in prokaryotic organisms.  Previous attempts to generate properly processed Ras in eukaryotic cells has

Combined RNA and DNA Vaccination Strategy for Improving the Vaccine Immune Response

The development of an effective HIV vaccine has been ongoing. HIV sequence diversity and immunodominance are major obstacles in the design of an effective vaccine. Researchers at the National Cancer Institute (NCI) developed a novel vaccine strategy combining both DNA and mRNA vaccination to induce an effective immune response. This combination strategy could also be used to develop vaccines against cancer or other infectious diseases (ex. SARS-CoV-2). 

PARP Inhibitor and NO-Donor Dual Prodrugs as Anticancer Agents

Poly-ADP ribose polymerase-1 (PARP-1) is a critical enzyme involved in DNA repair.  The inhibition of PARP has emerged as a promising strategy in cancer therapy.  Numerous PARP inhibitors have been developed and advanced into clinical trials, both for use as single agents in specific patient populations and as combination therapies with various chemotherapeutics.  The induction of strand break damage to DNA, as has been demonstrated in cancer cells treated with O2-arylated diazeniumdiolates, coupled with inhibition of DNA repair by PARP inhibitors, represents a novel rational