Peptide Mimotope Candidates for Otitis Media Vaccine

This technology describes peptide mimotopes of lipooligosaccharides (LOS) from nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis that are suitable for developing novel vaccines against the respective pathogens, for which there are currently no licensed vaccines. The mimotopes not only immunologically mimic LOSs from NTHi and M. catarrhalis but will also bind to antibodies specific for the respective LOS. NTHi and M. catarrhalis are common pathogens that cause otitis media in children and lower respiratory tract infections in adults.

Vaccines Comprising Sand Fly Salivary Proteins for Control of Leishmania Infection

This invention relates to the use of several peptides from the salivary glands of various sand fly species for the control of leishmania infection. Many of these peptides were shown to be effective in eliciting potent immune responses in animal models and are excellent candidates for the development of vaccines against the disease. A vaccine comprising one of the peptides was used to protect mice challenged with parasites and salivary gland homogenates.

HIV-Dependent Expression Vector

This invention provides a DNA construct that can be useful for both diagnostics and AIDS therapeutics. The construct can be incorporated into a retrovirus or into a cell line. This construct mediates the expression of a selected gene in the presence of HIV replication, but is silent in the absence of HIV. The cell line with the incorporated construct can be used as an indicator line for the presence of replication-competent HIV. The virus containing the construct can be used to co-infect a population of HIV-infected cells.

Codon-optimization of HIV-1 Viral Infectivity Factor (VIF) Gene

Expression of the HIV-1 Vif protein in the absence of other viral factors such a Tat and Rev is extremely inefficient due to the presence of inhibitory sequences on its mRNA. This invention uses codon optimization to remove such inhibitory sequences without altering the amino acid sequence of the protein. The modified vif gene in the resulting pcDNA -hVIF vector is expressed under the control of the CMV promoter. In this, the protein functions as wild type and is more amendable to high-level expression in mammalian cells.

Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Construction of Recombinant Baculoviruses Carrying the Gene Encoding the Major Capsid Protein, VP1, From Calicivirus Strains (Including Norovirus Strains Toronto, Hawaii, Desert Shield, Snow Mountain, and MD145-12)

The noroviruses (known as "Norwalk-like viruses") are associated with an estimated 23,000,000 cases of acute gastroenteritis in the United States each year. Norovirus illness often occurs in outbreaks, affecting large numbers of individuals, illustrated recently by well-publicized reports of gastroenteritis outbreaks on several recreational cruise ships and in settings such as hospitals and schools. Norovirus disease is clearly important in terms of medical costs and missed workdays, and accumulating data support its emerging recognition as important agents of diarrhea-related morbidity.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).

MVA Expressing Modified HIV envelope, gag, and pol Genes

This invention claims Modified Vaccinia Ankara (MVA), a replication-deficient strain of vaccinia virus, expressing Human Immunodeficiency Virus (HIV) env, gag, and pol genes, where the genes are isolated from Ugandan Clade D isolates, Kenyan Clade A isolates, and Tanzanian Clade C isolates. In a rhesus macaque SHIV model, DNA priming followed by a recombinant MVA (rMVA) booster controlled a highly pathogenic immunodeficiency challenge. Both the DNA and the rMVA components of the vaccine expressed multiple immunodeficiency virus proteins.

Anti-Vaccinia Monoclonal Antibody

The current technology describes a monoclonal antibody that reacts with a vaccinia virus protein abundantly expressed under an early viral promoter after infection of cells. The antibody is useful for quantitating vaccinia virus infected cells and for studying the function of the protein to which it binds, which is known to be a double stranded RNA binding protein involved in resistance of the virus to interferons. This antibody is available for licensing through a biological materials license agreement.

HIV-1 Infection Detection Assay for Seroconverted HIV-1 Vaccine Recipients

Available for licensing and commercial distribution is a serological test specifically designed to distinguish between antibodies generated in HIV vaccine recipients and those generated in a natural HIV infection. The method is useful in HIV vaccine development and clinical studies as it can readily detect early breakthrough infections in seroconverted vaccine recipients, thus providing the information required to determine vaccine efficacy. The test kit includes diagnostic peptide fragments derived from human immunodeficiency virus-1 (HIV-1).