Dual-Germline Antibody Engager Chimeric HIV–1 Immunogens
Despite four decades of intensive research, a safe and effective HIV-1 vaccine remains elusive due to the extreme difficulty in eliciting broadly neutralizing antibodies (bNAbs), which recognize and block HIV-1 from entering healthy cells. Only rare natural HIV-1 envelopes (Envs) promote the activation and expansion of naive B cells expressing unmutated germline antibodies of various bNAb lineages, but they typically do so for a single lineage for the same neutralization site.
Single Domain Antibodies (Nanobodies) Targeting SARS-CoV-2 for treating COVID-19
The COVID-19 pandemic is a worldwide public health crisis with over 100 million confirmed cases and 2.4 million deaths as of February 2021. COVID-19 is caused by a novel coronavirus called SARS-CoV-2. SARS-COV-2 infects hosts via its spike (S) protein. The S protein contains the receptor binding domain (RBD) that binds to the angiotensin converting enzyme 2 (ACE2) receptor on human cells to facilitate viral entry and infection. There are few therapeutics available for COVID-19 patients that directly target SARS-CoV-2.
Single Domain Antibodies Targeting the S2 Subunit of SARS-CoV-2 Spike Protein
The COVID-19 pandemic is a worldwide public health crisis with over 100 million confirmed cases and 2.4 million deaths as of February 2021. COVID-19 is caused by a novel coronavirus called SARS-CoV-2. Almost all the neutralizing antibodies targeting SARS-CoV-2 that are in development recognize the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of RBD and the ACE2 receptor on human cells is the first of the two critical steps for neutralization of the virus.
Epstein-Barr Virus (EBV)-feeder Cell Line
This technology includes irradiated Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCL) as feeder cells for the ex vivo expansion of natural killer (NK) cells. EBV-LCL feeder cells, altered by radiation to prevent uncontrolled growth, provide a supportive environment for NK cells to multiply effectively. This method addresses the challenge of obtaining sufficient quantities of functionally active NK cells, which are crucial components of the immune system known for their ability to target and destroy tumor cells and virally infected cells.
Enhanced Stability and Efficacy of Pfs48/45 Domain III Protein Variants for Malaria Vaccine Development Using SPEEDesign Technology
The technology includes modifying the Plasmodium falciparum Pfs48/45 Domain III protein sequence to enhance its stability and efficacy to aid in malaria vaccine development. This approach successfully overcomes previous production challenges by increasing the thermostability of the antigen and eliminating the need for additional modifications that could impair vaccine effectiveness. Crucially, the technology maintains the essential neutralizing epitope of Pfs48/45, ensuring its effectiveness in preventing malaria transmission as a transmission-blocking vaccine.
Novel Kinase Inhibitory Aplithianines
Summary
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a class of novel aplithianine-derived small molecule analogs that compete with ATP for binding on a range of clinically relevant kinases including:
Nanobodies Neutralizing Lassa Virus
Lassa Hemorrhagic Fever (LHF) is a serious disease caused by infection with Lassa virus (LASV) – highly prevalent in West Africa and spreading globally. LASV is associated with high morbidity and mortality rates, annually infecting 100,000 to 300,000 individuals and causing 5,000 deaths. Developing prophylactics and treatment for LASV is difficult due to challenges in inducing neutralizing antibodies and producing their target, the LASV glycoprotein trimer (GPC).
Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles
Bacterial spores can be modified to display molecules of interest, including drugs, immunogenic peptides, antibodies and other functional proteins of interest (such as enzymes). The resulting engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants.
Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method
DNA or RNA-based diagnostic tests for infectious diseases are critical in modern medicine. The current gold standard for COVID-19 detection is testing SARS-CoV-2 viral RNA by quantitative reverse transcription Polymerase Chain Reaction (RT-qPCR). This method involves patient sample collection with a nasopharyngeal swab, storage of the swab in a universal transport medium during transport to testing site, RNA extraction, and analysis of the extracted RNA sample.