Improved Protein Quantification Process and Vaccine Quality Control Production

This CDC invention is a method for identifying and quantifying a group of proteins in a complex mixture by a liquid chromatography-tandem mass spectrometry assay. The technology was developed for influenza although it can be used for a wide variety of protein quantification applications. As specifically developed, conserved peptides from the proteins of influenza (hemagglutinin, neuramidase, matrix 1 and 2, and nucleoprotein) have been synthesized and labeled to be used as internal standards for the quantification of those proteins in a complex (biological or manufactured) matrix.

Sensitive Method for Detection and Quantification of Anthrax, Bordetella pertussis, Clostridium difficile, Clostridium botulinum and Other Pathogen-Derived Toxins in Human and Animal Plasma

CDC research scientists have developed a method to identify and quantify the activity of pathogenic bacterial adenylate cyclase toxins by liquid chromatography tandem mass spectrometry (LC-MS/MS). Bacterial protein toxins are among the most potent natural poisons known, causing paralysis, immune system collapse, hemorrhaging and death in some cases.

Exposure and Activity Detection Assays for Anthrax Lethal Factor and Lethal Toxin

This CDC developed invention identifies an assay for extremely fast and sensitive detection of Bacillus anthracis lethal toxin (LTx), the toxin responsible for the lethal effects of anthrax infection. This assay has already been successfully tested in animals and will allow for early detection of anthrax exposure and screening of lethal factors to monitor anthrax toxicity, for example for vaccine trial candidates.

Improved Botulism, Botulinum Neurotoxin Type-E Diagnostics

CDC researchers have improved upon a prior, HHS patented mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate all seven botulinum neurotoxin (BoNT) types A to G. This current improvement comprises the addition of two optimized substrate peptides that increases the assay's sensitivity,relative to prior substrates, for botulinum neurotoxin type-E (BoNT/E) by greater than 100 fold.

Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents

Homocystinuria (HCU), a group of inherited disorders, causes symptoms ranging from failure to thrive and developmental delays in infants or young children to abnormal blood clots with onset in adults.1 Approximately 1 in 200,000 to 335,000 people have HCU globally.2

CC Chemokine Receptor 5 DNA, New Animal Models and Therapeutic Agents for HIV Infection

Chemokine receptors are expressed by many cells, including lymphoid cells, and function to mediate cell trafficking and localization. CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways.

4G10, a Monoclonal Antibody Against the Chemokine Receptor CXCR4, Raised Against a Synthetic Peptide of 38 Residues in Length Derived from the N-terminal Sequence of CXCR4

This invention identifies a monoclonal antibody (4G10) against the chemokine receptor CXCR4 and is a mouse IgG1 antibody. CXCR4 has been identified as a co-receptor mediating entry of HIV-1 into T cells. Subsequently, CXCR4 has been implicated in normal physiological functions, including activation of B cells and B cell progenitors and guiding their migration into the bone marrow (via its ligand SDF-1). CXCR4 also functions in T cell progenitor migration and neural progenitor stem cell activation.

MVA Expressing Modified HIV envelope, gag, and pol Genes

This invention claims Modified Vaccinia Ankara (MVA), a replication-deficient strain of vaccinia virus, expressing Human Immunodeficiency Virus (HIV) env, gag, and pol genes, where the genes are isolated from Ugandan Clade D isolates, Kenyan Clade A isolates, and Tanzanian Clade C isolates. In a rhesus macaque SHIV model, DNA priming followed by a recombinant MVA (rMVA) booster controlled a highly pathogenic immunodeficiency challenge. Both the DNA and the rMVA components of the vaccine expressed multiple immunodeficiency virus proteins.

Anti-Vaccinia Monoclonal Antibody

The current technology describes a monoclonal antibody that reacts with a vaccinia virus protein abundantly expressed under an early viral promoter after infection of cells. The antibody is useful for quantitating vaccinia virus infected cells and for studying the function of the protein to which it binds, which is known to be a double stranded RNA binding protein involved in resistance of the virus to interferons. This antibody is available for licensing through a biological materials license agreement.