Enhanced GFP-Expressing Human Metapneumovirus (HMPV): A Versatile Tool for Virology Research and Antiviral Drug Screening

The technology involves genetically engineering Human Metapneumovirus (HMPV) to express enhanced green fluorescent protein (GFP), enabling the monitoring of virus infection and gene expression through GFP fluorescence. This system serves as a sensitive and versatile tool for virology research, antiviral drug screening, and diagnostic applications.

Optimizing RSV Infection Monitoring and High-Throughput Screening Through GFP Expression in the First-Gene Position of Respiratory Syncytial Virus (RSV) Strain A2

In this technology, researchers have engineered a modified version of Respiratory Syncytial Virus (RSV) strain A2 using reverse genetics to incorporate green fluorescent protein (GFP) into the first-gene position. This genetic modification allows for the efficient monitoring of RSV infection and the screening of potential chemical inhibitors. The GFP expression can be easily detected through fluorescence microscopy in live or fixed cells, providing a sensitive tool for both research and drug discovery.

Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

Characterization and Comparison of LAD2 and LADR Mast Cell Lines: Insights into Mastocytosis and HIV Infection

LAD2 and LADR cell lines are invaluable tools in mast cell research, offering insights into mastocytosis and immune responses. Derived from CD34+ cells, LAD2 cells have been extensively used for over 18 years, while LADR cells, a newer variant, exhibit enhanced characteristics such as larger size, increased granulation, and faster doubling time. Both cell lines release granular contents upon FceRI aggregation and can be infected with various strains of HIV. LADR cells, in particular, show greater expression of certain surface receptors and mRNA compared to LAD2 cells.

A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.

Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses

Although flaviviruses cause a great deal of human suffering and economic loss, there is a shortage of effective vaccines. This invention relates to dengue virus mutations that may contribute to the development of improved dengue vaccines. Site directed and random mutagenesis techniques were used to introduce mutations into the dengue virus genome and to assemble a collection of useful mutations for incorporation in recombinant live attenuated dengue virus vaccines.

Major Neutralization Site of Hepatitis E Virus and Use of this Neutralization Site in Methods of Vaccination

Hepatitis E is endemic in many countries throughout the developing world, in particular on the continents of Africa and Asia. The disease generally affects young adults and has a very high mortality rate, up to 20%, in pregnant women. This invention relates to the identification of a neutralization site of hepatitis E virus (HEV) and neutralizing antibodies that react with it. The neutralization site is located on a polypeptide from the ORF2 gene (capsid gene) of HEV.

Four Chimpanzee Monoclonal Antibodies that Neutralize Hepatitis A Virus

This invention claims antibodies and/or fragments thereof specific for hepatitis A virus (HAV) and the use of the antibodies in the diagnosis, prevention, and treatment of hepatitis A. Hepatitis A is the most common type of hepatitis reported in the United States, which reports an estimated 134,000 cases annually, and infects at least 1.4 million people worldwide each year. HAV is a positive sense RNA virus that is transmitted via the fecal-oral route, mainly through contaminated water supplies and food sources.

Vaccination Strategies to Provide Protection Against the Ebola Virus

This invention describes a method for vaccination against Ebola virus. Outbreaks of hemorrhagic fever caused by the Ebola virus, particularly the Zaire subtype, are associated with high mortality rates. The virus is very contagious, and during an outbreak, presents a threat to anybody who comes into contact with an infected person. Because the virus progresses so rapidly and the mortality rate is so high, there is little opportunity to develop natural immunity, making vaccination a promising intervention.