Recombinant MVA Viruses Expressing Clade A/G and Clade B Modified HIV Env, Gag and Pol Genes Useful for HIV Vaccine Development

The current technology relates to the construction, characterization and immunogenicity of modified vaccinia Ankara (MVA) recombinant viruses. The MVA double recombinant viruses express modified/truncated HIV-1 Env and mutated HIV Gag Pol under the control of vaccinia virus early/late promoters. This technology describes the MVA double recombinant viruses made by homologous recombination of single MVA recombinants, one expressing Env and one expressing Gag Pol. These single MVA recombinants are made using a transiently expressed GFP marker that is deleted in the final viruses.

Transmission-Blocking Vaccine Against Malaria (1)

A transmission blocking vaccine developed against malaria contains a recombinant virus, which encodes a unique portion of the sexual stage surface antigen of Plasmodium falciparum (referred to as Pfs25), or the Pfs25 protein purified from infected host cells. Mice inoculated with the recombinant virus developed antibodies capable of blocking transmission of the virus. None of the monoclonal antibodies known to block transmission recognize the reduced Pfs25 antigen. This vaccine, which induces high, long-lasting titers at low cost, can be useful for controlling malaria.

A Shuttle Plasmid, Recombinant MVA/HIV1 Clinical Vaccine Constructs and a Mechanism for Enhanced Stability of Foreign Gene Inserts by Codon Alternation and for Insertion of the Foreign Gene Between Two Vaccinia Virus Essential Genes

Since the onset of the AIDS epidemic more than two decades ago, enormous efforts have been directed to making a vaccine that will protect against human immunodeficiency virus-1 (HIV); an effective vaccine is thought to require the induction of cellular and humoral responses. Vaccine candidates have included a variety of HIV immunogens delivered as DNA, attenuated poxviruses, adenoviruses, vesicular stomatitis virus, proteins, and various combinations thereof. The inventors' efforts to design an HIV vaccine have focused on modified vaccinia virus Ankara (MVA) as a vector.

HIV Monoclonal Antibodies

This technology describes several hybridomas that produce monoclonal antibodies (mAbs) useful in HIV research applications. The mAbs are specific for either gp41 or gp120. In particular, the hybridomas producing mAbs designated D19, D56, M12, T8 and T24 (all anti-gp120), and T32 and T33 (gp41 specific) were found to be of particular utility. Additional hybridomas expressing mAbs disclosed in the publications may also be available.

Use of Mono-Amine Oxidase Inhibitors to Prevent Herpes Virus Infections and Reactivation from Latency

Available for licensing are methods of using Monoamine Oxidase Inhibitors (MAOIs) to prevent alpha-herpesvirus lytic infections, such as those caused by Herpes simplex virus (HSV-1 or HSV-2) and Varicella zoster virus (VZV), and to possibly prevent the periodic reactivation of these viruses from latency. MAOIs have been historically used to treat depression, hypertension, and related diseases. The invention describes how MAOIs can also inhibit LSD1, a histone/protein demethylase that is required for initiation of alpha-herpesvirus lytic infection.

Recombinant Vaccines Based on Poxvirus Vectors

The technology offered for licensing is foundational in the area of recombinant DNA vaccines. In the last several years, facilitated through a licensing program of the NIH, the technology has been broadly applied in the development and commercialization of several novel human and veterinary vaccines in the areas of infectious disease as well as cancer therapeutics. The NIH wishes to expand its licensing program of the subject technology in a variety of applications that will benefit public health.

Biological/Research Material for H1N1 Influenza Virus Vaccine Research

Offered for licensing is a recombinant attenuated vaccinia virus, MVA, that expresses the haemagglutinin (HA) and nucleoprotein (NP) of influenza virus A/PR/8/34 (H1N1). The virus has been shown to stimulate protective immunity to influenza virus in mice.

The materials can be used for research purposes and in particular in the area of influenza virus vaccines.

The related publications listed below demonstrate the usefulness of this biological material in influenza virus vaccine research.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells.

Prevention and Treatment of Herpes Virus Infection by Inhibition of the JMJD2 Family of Histone Demethylases

Investigators at the NIH have discovered a potential means for preventing or treating a herpes virus infection by inhibiting the activity of the host cell’s histone demethylases. When herpesviruses enter a cell, they are inactivated by cellular defense mechanisms that wrap the viral genome in repressive chromatin structures. In order for viral replication to progress, the host’s own histone demethylases are recruited to the viral genome to reverse this repression.