Novel One-Well Limiting-Antigen Avidity Enzyme Immunoassay to Detect Recent HIV-1 Infection Using a Multi-subtype Recombinant Protein

This CDC developed Limiting-Antigen avidity Enzyme Immunoassay (LAg-avidity-EIA) provides an easy way to measure increasing binding strength (avidity) of HIV antibodies as part of maturation HIV antibodies after seroconversion, providing a method to distinguish early-stage from long-term HIV-1 infection. Surveillance of HIV-1 provides information on prevalence rates of the disease, but determination of new infection rates (HIV-1 incidence) is difficult to deduce. Longitudinal follow up is expensive and can be biased.

Novel In Vitro Granuloma Model for Studying Tuberculosis and Drug Efficacy

CDC researchers have developed an in vitro model system designed to simulate early-stage Mycobacterium tuberculosis infection and induced granuloma formation. This modeling platform can be used for studying tuberculosis pathogenicity, identifying phenotypically-interesting clinical isolates, studying early-stage host cytokine/chemokine responses, and in vitro candidate-drug screening.

Diagnostic Antigens for the Identification of Latent Tuberculosis Infection

CDC researchers have developed technology for sero-diagnosis of typically symptomless latent stage tuberculosis disease, posing a threat to individuals under immunosuppressive or anti-inflammatory therapies. Specifically, this diagnostic approach exploits M. tuberculosis secreted latency specific antigens, such as alpha-crystallin, in the blood or urine of patients.

Multiple Antigenic Peptide Assays for Detection of HIV and SIV Type Retroviruses

CDC scientists have developed multiple antigenic peptide immunoassays for the detection of human immunodeficiency virus (HIV) and/or simian immunodeficiency virus (SIV). HIV can be subdivided into two major types, HIV-1 and HIV-2, both of which are believed to have originated as result of zoonotic transmission. Humans are increasingly exposed to many different SIVs by wild primates. For example, human exposure to SIVs frequently occurs as a consequence of the bush meat hunting and butchering trade in Africa.

Multivalent, Multiple-Antigenic-Peptides for Serological Detection of HIV-1 Groups -M, -N, -O, and HIV-2

This CDC-developed invention pertains to multivalent antigenic peptides (MAPs) that can be used in a variety of HIV/AIDS diagnostics. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is subdivided into groups M, N, and O, while HIV-2 is subdivided into subtypes A and B. Within HIV -1 group M, several different subtypes and numerous forms of recombinant viruses exist. To detect all types, groups, and subtypes of HIV by serological methods, a mixture of antigens derived from different viral strains representing different HIV types and subtypes is needed.

A Device for Simultaneous and Rapid Diagnosis and Detection of Recent and Long Term HIV-1 Infection

CDC scientists have developed a device for simultaneous rapid diagnosis of HIV infection and for identification of recent HIV-1 infection. The device utilizes immunochromatographic or flow-through principles to detect HIV antibodies within clinical samples. This device may be used for diagnosis of HIV infection, as well as to distinguish between recent infection (6 months) and long-term infection (>1 year).

On-site in vitro Diagnostic: Real-time Loop-Mediated Isothermal Amplification Detection of HIV-2 Groups A and B

This CDC-developed technology entails a nucleic acid-based HIV-2 in vitro diagnostic assay that is well-suited for use in mobile testing units/vehicles or resource-limited settings, for example, many areas of West Africa. Because HIV-2 requires unique treatment regimens, accurate, early diagnosis is crucial for effective care and directing treatment. Recently, new HIV testing recommendations have been proposed for laboratory settings, which include the use of a HIV-1/HIV-2 discriminatory assay.

Novel Enzyme-Based Immunoassay for Simultaneous Detection of Hepatitis C Virus Antigen and Antibody in Human Serum or Plasma

CDC scientists have developed a novel enzyme immunoassay for the simultaneous detection of hepatitis C virus (HCV) core antigen and circulating HCV antibodies. Serological testing procedures for HCV circulating antibodies are well established. There is, however, a window of time between HCV infection and seroconversion that generates an opportunity for false negative results. This period varies from two months in immunocompetent subjects to six to twelve months in immunodeficient patients.

Inhibition of HIV Infection through Chemoprophylaxis Using Emtricitabine and Tenofovir

The invention is directed to prophylactic administration of emtricitabine (FTC) in combination with tenofovir or its prodrug, tenofovir disoproxil fumarate (TDF), to protect against transmission of human immunodeficiency virus (HIV) infection. Also disclosed are other nucleoside reverse transcriptase inhibitors (NRTIs) and nucleotide reverse transcriptase inhibitors (NtRTIs) that, when administered in combination, protect against HIV infection.

Monoclonal Antibodies to the HIV-1 Core Protein p24

The core proteins of HIV-1 are secreted into the environment during replication in the human body. The detection of the core protein p24 (molecular mass of 24 kilodaltons) serves as an indicator of early HIV-1 infection, and assays detecting it have been available since the late 1980s. However, the development of a rapid assay for the detection of HIV-1 p24 has only recently become available.