Epstein-Barr Virus (EBV)-feeder Cell Line

This technology includes irradiated Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCL) as feeder cells for the ex vivo expansion of natural killer (NK) cells. EBV-LCL feeder cells, altered by radiation to prevent uncontrolled growth, provide a supportive environment for NK cells to multiply effectively. This method addresses the challenge of obtaining sufficient quantities of functionally active NK cells, which are crucial components of the immune system known for their ability to target and destroy tumor cells and virally infected cells.

Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).

This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.

Genetic Manipulation of Natural Killer Cells to Express c-MPL Growth Factor Receptor as a Therapy for Cancer

This technology includes genetic manipulation of natural killer (NK) cells to express thrombopoietin receptor (c-MPL) growth factor receptor as strategy to augment NK cell proliferation and anti-tumor immunity. Many investigational adoptive immunotherapy regimens utilizing NK cells require the administration of IL-2 or IL-15 cytokines to support the survival and function of the cells in patients, however administration of these cytokines causes a number of serious dose-dependent toxicities.

General-purpose Deep Learning Image Denoising Based on Magnetic Resonance Imaging Physics

This technology includes a novel method to train deep learning convolution neural network model to improve the signal-noise-ratio for the magnetic resonance (MR) imaging. The novelty lies on the fact that actual MR imaging physics information is used in the deep learning training. The resulting model achieves significant signal-to-noise ratio (SNR) improved for different acceleration factors in MR imaging. The resulting model can be used for many body anatomies (e.g., brain, heart, liver, spine, etc.) to significantly improve the SNR.

A Method to Guide Protocol Development for Magnetic Resonance Thermometry

This technology includes tools to guide optimization of thermometry imaging/post-processing protocols. Proton Resonance Frequency (PRF) thermometry is a widely used Magnetic Resonance Imaging (MRI) based technique to monitor changes in tissue temperature in response to thermal therapy. The use of PRF thermometry with thermal therapy procedures is indispensable to ensure delivery of desired thermal dose to the target tissue, and to minimize unintended damage to the normal tissue.

A Principal Component Analysis Based Multi-baseline Phase Correction Method for PRF Thermometry

This technology includes a novel Principal Component Analysis (PCA) based approach to correct motion related B0 changes in PRF thermometry. Proton Resonance Frequency (PRF) thermometry is a widely used Magnetic Resonance Imaging (MRI) based technique to monitor changes in tissue temperature in response to thermal therapy. The use of PRF thermometry with thermal therapy procedures is indispensable to ensure delivery of desired thermal dose to the target tissue, and to minimize unintended damage to the normal tissue.

Antibody to Mitochondrial Uniporter (MCU

This technology includes a generated polyclonal antibody in rabbit that detects the mitochondrial uniporter (MCU) protein. This antibody was created by immunizing rabbits with a synthesized sequence of the MCU protein and can be used to identify and quantify MCU protein in various tissues. The polyclonal nature of the antibody ensures it recognizes multiple epitopes on the MCU, enhancing detection reliability. This technology is crucial for understanding MCU's role in mitochondrial function and mammalian physiology.

A Method to Remove Fluid-motion Related Artifacts in Magnetic Resonance Thermometry Images Using Magnetic Field Gradients

This technology includes the incorporation of a magnetic field gradient waveform (consisting of two or more pulses) between excitation and encoding to eliminate signal from moving fluid for imaging applications. Proton Resonance Frequency (PRF) thermometry is a widely used Magnetic Resonance Imaging (MRI) based technique to monitor changes in tissue temperature in response to thermal therapy. The use of PRF thermometry with thermal therapy procedures is indispensable to ensure delivery of desired thermal dose to the target tissue, and to minimize unintended damage to the normal tissue.

A Pre-emphasis Technique Based on the Temperature-dependent Gradient System Behavior for Trajectory Correction in MR Imaging

This technology includes the determination of temperature dependent temporal deviations of the real from the intended gradient waveforms and k-space trajectories during MRI image acquisition, and the use of appropriate temperature dependent pre-compensations to avoid or reduce the image distortion caused by these temporal deviations on the gradient waveforms and k-space trajectories, which will improve imaging quality.

Highly Efficient Gene Transfer into Primary and Expanded Human Natural Killer Cells by Lentiviral Transduction for Cancer Therapy

This technology includes an efficient lentiviral vector-based method for gene transfer into NK cells and demonstrates a stable and long-term robust expression of transgenes for the treatment of cancer. High gene transfer rates into primary cells being transduced and the ability to produce high titers of virus particles for large-scale transduction of patient cells are prerequisites for clinical trials. Lentiviral vectors can be produced in high titer and concentrated without compromising their transduction efficiency.