Highly Sensitive Tethered-Bead Immune Sandwich Assay

This technology is a highly sensitive tethered-bead immune sandwich assay. Analyte molecules are captured between two antibodies, a capture antibody and a detection antibody. The capture antibody on a micron-size bead binds analyte from a sample fluid. The bead-captured analyte is then exposed to a “detection” antibody that binds to the bead-captured analyte, forming a “sandwich”. The sandwiched analyte-bead complex then connects to a flexible polymer (such as DNA) anchored on a solid surface to form tethered particles.

T Cell-Based Adoptive Transfer Immunotherapy for Polyomavirus-Associated Pathologies

Available for licensing are methods to generate T cells responsive to multiple polyomaviruses. The resulting T cell populations could be useful in treating immunosuppressed individuals with polyomavirus infections or polyomavirus-associated pathologies such as Merkel cell carcinoma (MCC), polyomavirus-associated nephropathy (PVAN), hemorrhagic cystitis, progressive multifocal leukoencephalopathy (PML), and trichodysplasia spinulosa (TS). The methods could also be used to restore polyomavirus-specific immunity in immunocompromised individuals.

A Novel Therapeutic Vector for Hemoglobin Disorders

Investigators at the National Heart, Lung, and Blood Institute have designed a novel lentiviral vector as a potential gene therapy for sickle cell anemia and beta-thalassemia. The novel lentiviral vector encodes the beta-globin gene in a forward orientation and can produce 5-10 fold higher viral titer and 4-10 fold higher gene transfer efficiency to hematopoietic stem cells than reverse-oriented lentiviral vectors. In vivo studies conducted in rhesus macaques show beta-globin production after transplantation with this novel lentiviral vector.

Three-Dimensional Curved Catheter for Right Atrial Appendage Traversal

Available for licensing and commercial development is a three-dimensionally configured curved catheter for safe traversal of the right atrial appendage (RAA). The device is configured to optimize one-way access of the pericardial space through the right atrium and into the RAA reducing the risk of coronary lacerations. Specifically the curved catheter is best described in three segments: a proximal segment, a transitional segment and a distal segment; the transition segment having a clockwise spiral shaped curvature.

Software for Fully Automating Myocardial Perfusion Quantification

Software is has been developed and available for licensing that fully automates image processing for the quantification of myocardial blood flow (MBF) pixel maps from firstpass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. The system removes the need for laborious manual quantitative CMR perfusion pixel map processing and can process prospective and retrospective studies acquired from various imaging protocols. In full automation, arterial input function (AIF) images are processed for motion correction and myocardial perfusion images are corrected for intensity bias.

Alloreactive T Cell Depletion Method For Preventing Graft-Versus-Host Disease

The invention relates to the use of adenosine to deplete alloreactive T cells from donor grafts to prevent graft-versus-host disease (GVHD). The method includes culturing donor cells that include T cells with recipient antigen presenting cells (APCs) to form a mixture of cells. The recipient’s APCs activate donor T cells. The activated T cells are treated with high doses of adenosine or an adenosine-like molecule to decrease or inhibit viability of the activated donor T-cells.

Capsid-Free AAV Vectors for Gene Delivery and Their Use for Gene Therapy

The invention concerns novel capsid-free AAV vectors that can be used for gene delivery and gene therapy applications. The invention provides for a linear nucleic acid molecule comprising in this order: a first adeno-associated virus (AAV) inverted terminal repeat (ITR), a nucleotide sequence of interest, and a second AAV ITR, wherein said nucleic acid molecule is devoid of AAV capsid protein coding sequences. The said nucleic acid molecule can be applied to a host at repetition without eliciting an immune response.

Enhanced Functionalization of Carbon Nanoparticles for Biomedical Applications

The invention pertains to methods of increasing the density of carboxylic acids on the surface of a carbon nanoparticle that can be functionalized with biologically relevant molecules, such as antibodies or peptides, for biomedical applications. Advantageously, the method could increase functionalization of a nanoparticle by at least about 1x107 functional groups/g of nanoparticle.

Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7

A highly efficient method to genetically modify natural killer (NK) cells to induce expression of high affinity CD16 (HA-CD16) through mRNA electroporation, to potentiate NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). ADCC is mediated by CD16+ NK cells following adoptive NK cell transfer, but most humans express CD16 which has a relatively low affinity for IgG1 antibodies.

Hybrid Computer Tomography Scanning System

The invention relates to a combination hybrid computer tomography (CT) system that is particularly suited for elucidating stages in pulmonary diseases, notably cystic fibrosis and lung cancer. Improved visualization of lung parenchyma and the margins of lung cysts (non-invasive “virtual biopsy”) may provide sufficient detail to distinguish the types of cystic lesions such that the typical lung tissue pathologic biopsy would not be needed to make a diagnosis.