Optical Trap Methods to Determine the Viscoelastic Properties of Biological Materials

Optical traps (optical tweezers) have a focused laser beam able to trap a small bead at its focus, and are used to measure the microrheology of gels and other materials. They have recently been used to characterize properties of living cells, however issues of image spatial resolution and limited depth of interrogation have prevented application of an optical trap to measure microrheological (flow of matter) properties in complex (non-uniform) materials, such as multi-cellular systems or living organisms. 

Anti-SLAMF7 Chimeric Antigen Receptors

Immortalization of plasma cells leads to Multiple Myeloma (MM). Signaling Lymphocyte Activation Molecule F7 (SLAMF7) is highly expressed on the malignant plasma cells that constitute Multiple Myeloma. The expression of SLAMF7 by MM cells and lack of expression on nonhematologic cells makes SLAMF7 a promising target for chimeric antigen receptor (CAR) T cell therapies for the treatment of MM. 

Nanobodies Neutralizing Lassa Virus

Lassa Hemorrhagic Fever (LHF) is a serious disease caused by infection with Lassa virus (LASV) – highly prevalent in West Africa and spreading globally. LASV is associated with high morbidity and mortality rates, annually infecting 100,000 to 300,000 individuals and causing 5,000 deaths. Developing prophylactics and treatment for LASV is difficult due to challenges in inducing neutralizing antibodies and producing their target, the LASV glycoprotein trimer (GPC).

IgG4 Hinge Containing Nanobody-based CARs Targeting GPC3 for Treating Liver Cancer

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Globally, HCC is the sixth most prevalent cancer and third leading cause of cancer-related morbidity. Standard treatment for HCC is not suitable for a large proportion of liver cancer patients. Part of this is because less than a quarter of HCC patients are surgical candidates for curative-intent treatment. As a result, alternative treatments are needed. Chimeric antigen receptor (CAR) T cell therapy is a promising alternative approach selectively targets targeting tumors via tumor-specific antigens.

Therapeutic Immunotoxins with Increased Half-Life and Anti-Tumor Activity

Recombinant Immunotoxins (RITs) are chimeric molecules composed of an antigen binding domain and toxin. The antigen binding domain component targets the cancer cell and delivers the toxin component to the cell. However, the efficacy of RITs is limited by their short half-life once they are in the patient. To address this problem, investigators at the National Cancer Institute (NCI) increased the half-life of RITs using polyethylene glycol (PEG).

Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

CD19 and CD20 are promising targets for the treatment of B-Cell malignancies.  Unfortunately, some clinical studies have shown that there is a loss of CD19 or CD20 expression in various cases of lymphomas and leukemias, particularly after treatment with an agent that targets CD19 (e.g., anti-CD19 CAR-T). However, studies have shown that expression of one protein is retained when the other is lost. This suggests that a therapeutic with the ability to simultaneously target both CD19 and CD20 could represent a solution to the drawbacks of current therapies. 

High Affinity Monoclonal Antibodies Targeting Glypican-1

Pancreatic cancer is the fourth most common cause of death from cancer in the U.S. The overall 5-year survival rate for this disease is 8.5%. Glypican-1 (GPC1), a cell surface heparan sulfate proteoglycan protein that is overexpressed in pancreatic cancer. Due to this preferential expression, GPC1 represents a potential candidate for targeted therapy for patients with pancreatic cancer and other GPC1 expressing cancers such as prostate cancer.

New Chimeric Antigen Receptor (CAR) Format for Developing Improved Adoptive Cell Therapies

Adoptive cell therapy (ACT) is an attractive new therapeutic approach for treating various cancers. ACT has recently demonstrated a high degree of efficacy when treating patients with hematological malignancies. However, to date, no effective Chimeric Antigen Receptors (CAR) T cell therapy exists for solid tumors.

High-Affinity Rabbit Monoclonal Antibodies for Cancer Treatment

Mesothelin is a cell surface protein that is highly expressed in aggressive cancers, such as malignant mesothelioma, ovarian cancer and pancreatic cancer, lung cancer, breast cancer, cholangiocarcinoma, bile duct carcinoma and gastric cancer.  Because of this selective expression, mesothelin is an excellent candidate for targeted therapeutics, such as monoclonal antibodies (mAbs) and chimeric molecules.  Current anti-mesothelin therapeutic mAb candidates bind to an epitope in Region I of mesothelin.  Unfortunately, Region I contains the interaction site MUC16/CA125, a mesothe