Fully Human Antibody Targeting Tumor Necrosis Factor Receptor Type 2 (TNFR2) for Cancer Immunotherapy

Tumor necrosis factor receptor type 2 (TNFR2)-expressing regulatory T cells (Tregs), present in the tumor microenvironment, play an important role in tumor immune evasion. TNFR2 plays a crucial role in stimulating the activation and proliferation of Tregs, a major checkpoint of antitumor immune responses. In addition to its expression on Tregs, TNFR2 is also known to be overexpressed on some types of tumors and the survival and growth of these tumor cells is promoted by ligands of TNFR2.

Therapeutic Antitumor Combination Containing TLR4 Agonist HMGN1

Immune checkpoint inhibitors (e.g. CTLA-4, PD-L1) have recently shown significant promise in the treatment of cancer.  However, when used alone, these checkpoint inhibitors are limited by the absence or repression of immune cells within the targeted cancer.  For those cancers associated with these limited immune systems, there remains a need for effective therapies.  Agents capable of recruiting and activating immune cells to these types of cancers could extend the overall and complete response rates of combination therapies within the immunooncology domain. 

Renal Selective Unsaturated Englerin Analogues

Englerin A, a natural product, has shown growth-inhibiting activity against renal cancer cell lines. The compound is an agonist of protein kinase C (PCK) theta, which results in cell cytotoxicity, insulin inhibition, and selective activation of viral replication in T cells.  Englerin A derivatives are promising treatment strategies for any diseases associated with PKC theta and/or ion channel proteins.

Anti-Viral Compounds that Inhibit HIV Activity

Several novel tropolone derivatives have been identified that inhibit HIV-1 RNase H function and have potential for anti-viral activity due to reduced cellular toxicity.  Inhibiting RNase H function is a potential treatment for many viral infections, since RNase H function is essential for viral replication for many pathogenic retroviruses such as HIV-1 and HIV-2.  Although many hydroxytropolone compounds are potent RNase H inhibitors biding at the enzymatic active site, they are limited as therapeutic candidates by their toxicity in mammalian cells.  The toxicity thought to

Methods For Treating or Preventing Inflammation and Periodontitis

Bone-loss-related diseases, such as periodontitis, are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. There are several signaling pathways that participate in the osteoclastogenesis process. Finding inhibitors of these pathways and other osteoclastogenesis-related pathways may have an effect on bone-loss diseases.

Nanoparticle delivery of lung cancer therapeutic

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths in developed countries.  Despite the availability of several synergistic, targeted therapy regiments, the 5-year survival rate for NSCLC is only 15%.  The poor prognosis of NSCLS is due in part to limitations of current treatments, which do not trigger an immune response against NSCLC, nor can they be directly delivered into the lungs.  

T Cell Receptors Targeting EGFR L858R mutation on HLA-A*11:01+ Tumors for Use as Research Tools

Tumor-specific mutated proteins can create neoepitopes, mutation-derived antigens that distinguish tumor cells from healthy cells, which are attractive targets for adoptive cell therapies. However, the process of precisely identifying the neoepitopes to target is complex and challenging. One method to identify such neoepitopes is Mass Spectrometry (MS) when used in conjunction with elution of peptides bound to a specific Human Leukocyte Antigen (HLA) allele.